С. В. Смоленчук, мл. науч. сотрудник; К. И. Янушкевич, ст. науч. сотрудник; А. К. Богуш, директор МП «Феррит»

МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ФЕРРИТОВ СО СТРУКТУРОЙ МАГНЕТОПЛЮМБИТА Sr_{1-x}La_xFe_{12-x}Me_xO₁₉ (Me – Mn, Zn, Co)

Lanthanum and zinc, manganese substitution in M-type hexaferrite was studied in detail in order to investigate magnetic characteristics: the saturation magnetization, the Curie temperature (T_C) , (Br), maximum energy product $((BH)_{max})$ and coercive force H_A .

Вещества, обладающие большой величиной константы магнитной анизотропии, имеют высокие значения коэрцитивной силы и из них изготавливаются постоянные магниты, которые широко используются в различных отраслях науки и техники. К ним относятся ферриты бария и стронция со структурой магнетоплюмбита [1-6]. Теоретически коэрцитивная сила этих магнитов может иметь величину порядка 19 кЭ. На практике по ряду причин она не превышает 3 кЭ. В связи с этим во многих научных центрах проводятся исследования, направленные на повышение коэрцитивной силы материалов на основе этих ферритов, которые имеют ряд преимуществ по сравнению с высококоэрцитивными сплавами. Сюда в первую очередь следует отнести значительно более низкую стоимость постоянных магнитов из ферритов бария и стронция по сравнению с дорогими магнитами, содержащими кобальт и редкоземельные металлы.

Значительное влияние на значение коэрцитивной силы постоянных магнитов из ферритов бария и стронция оказывают различные добавки и величина частиц исходных порошков [7–8]. Недавно появилось сообщение [9], что частичное замещение стронция на лантан и эквивалентное замещение железа на цинк в феррите стронция позволяет повысить магнитную энергию феррита стронция, однако, при этом происходит значительное уменьшение температуры Кюри, что отрицательно сказывается на других характеристиках постоянных магнитов, в том числе на их термостабильности, то есть на изменении магнитных свойств при изменении температуры.

В связи с этим в настоящей работе впервые синтезированы твердые растворы на основе феррита стронция, в котором проведено частичное замещение ионов стронция ионами лантана, а эквивалентное количество ионов железа – совместно ионами марганца и цинка. При таком гетеровалентном замещении ионов стронция и железа ионами лантана, марганца и цинка состав феррита стронция выражается формулой Sr_{1-x}La_xFe_{12-x}Mn_{x/2}Zn_{x/2}O₁₉, x = 0; 0,1; 0,2 0,3; 0,4; 0,5. Также впервые синтезированы твердые растворы гексаферрита стронция с частичным замещением ионов стронция на ионы лантана и ионов железа на ионы марганца, цинка и кобальта со структурой магнетоплюмбита составов Sr_{0,7}La_{0,3}Fe_{11,7}Mn_{0,3}O₁₉, Sr_{0,7}La_{0,3}Fe_{11,7}Zn_{0,3}O₁₉, Sr_{0,7}La_{0,3}Fe_{11,7}Cn_{0,3}O₁₉, Sr_{0,7}La_{0,3}Fe_{11,7}Cn_{0,3}O₁₉, B интервале температур 77-800 К исследованы их удельные намагниченности — основной магнитный параметр и определены температуры Кюри.

Синтез образцов твердых растворов на основе феррита стронция проводился по керамической технологии из оксидов Fe₂O₃, ZnO, Со₃О₄ (марки «ч. д. а.») и карбонатов стронция, марганца (марки «ч. д. а.»). Перемешивание и помол смесей порошков исходных веществ, взятых в необходимом соотношении, проводили в лабораторной вибромельнице со стальными шарами в среде этилового спирта в течение 4-5 ч. Первый обжиг таблеток исследованных смесей проводился на воздухе при 1473 К в течение 4 ч. Обожженные таблетки дробились в стальной ступке и мололись в вибромельнице в среде этилового спирта в течение 4 ч. Окончательно образцы обжигались на воздухе при температуре 1453 К в течение 2 ч. Рентгеновские дифрактограммы получены на аппарате ДРОН-2 в излучении CuK_a. Как показал рентгенофазовый анализ, при обжиге смесей порошков соответствующих оксидов и карбонатов металлов все полученные образцы гексаферритов были однофазными.

Удельная намагниченность насыщения о в магнитном поле 8,6 кЭ измерялась методом Фарадея в интервале температур 77–1100 К. Результаты изучения температурных зависимостей удельной намагниченности представлены на рис. 1.

С использованием этих зависимостей $\sigma = f(T)$, для каждого состава установлена температура Кюри T_C , которая определялась экстраполяцией на ось температур кривой температурной зависимости удельной намагниченности насыщения до нулевой величины, и значение удельной намагниченности σ при температуре T = 77 К (табл. 1). Температура Кюри T_C гексаферрита стронция без замещения SrFe₁₂O₁₉ составляет 725 К. Это практически соответствует значению T_C , полученному ранее для феррита стронция (723 K) [2]. Замещение ионов железа ионами марганца и цинка до значения x = 0,3 снижает температуру Кюри на 5–15 К. Дальнейшее увеличение степени замещения приводит к последующему значительному уменьшению температуры Кюри до $T_C = 670$ К для феррита состава $Sr_{0.5}La_{0.5}Fe_{11,5}Mn_{0.25}Zn_{0.25}O_{19}$.

Были также проведены измерения таких основных магнитных характеристик изотропных образцов исследованных ферритов, намагниченных до насыщения в поле 0,46 Тл, как коэрцитивная сила, остаточная индукция и $(BH)_{max}$, значения которых приведены в табл. 2. Определение магнитных характеристик проводилось с помощью измерительной информационной системы (ИИС) У5056, которая предназначена для определения статических магнитных характеристик образцов магнитотвердых материалов. Из табл. 2 видно: несмотря на то, что $_{B}H_{C}$ проходит через максимальное значение для состава Sr_{0.7}La_{0.3}Fe_{11.7}Mn_{0.15}Zn_{0.15}O₁₉, значение (*BH*)_{тах} плавно уменьшается (рис. 2), и это кореллирует с изменением магнитного момента n_{B} и коэрцитивной силы $_{B}H_{C}$ от состава.

Для твердых растворов со структурой магнетоплюмбита составов $Sr_{0,7}La_{0,3}Fe_{11,7}Mn_{0,3}O_{19}$, $Sr_{0,7}La_{0,3}Fe_{11,7}Zn_{0,3}O_{19}$, $Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,3}O_{19}$, $Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,3}O_{19}$ были также проведены измерения магнитных характеристик. Кривая температурной зависимости удельной намагниченности для твердого раствора состава $Sr_{0,7}La_{0,3}Fe_{11,7}Zn_{0,3}O_{19}$ представлена на рис. 3. Для других исследованных гексаферритов она имеет аналогичный вид. В табл. 3–4 представлены изученные магнитные характеристики.

Рис. 1. Температурные зависимости намагниченности образцов состава Sr_{1-x}La_xFe_{12-x}Mn_{x/2}Zn_{x/2}O₁₉, где x = 0,1; 0,2; 0,3; 0,4; 0,5

Таблица 1

Значения температуры Кюри T_c , удельной намагниченности насыщения σ и магнитного момента n_B в магнетонах Бора одной формульной единицы твердого раствора $Sr_{1-x}La_xFe_{12-x}Mn_{x/2}Zn_{x/2}O_{19}$

Состав	Т _С , К	σ при T = 77 K, Гс · см ³ /г.	n _B
SrFe ₁₂ O ₁₉	725	79,6	15,16
$Sr_{0.9}La_{0.1}Fe_{11.9}Mn_{0.05}Zn_{0.05}O_{19}$	710	73,61	14,09
Sr _{0,8} La _{0,2} Fe _{11,8} Mn _{0,1} Zn _{0,1} O ₁₉	720	64,07	12,33
Sr _{0,7} La _{0,3} Fe _{11,7} Mn _{0,15} Zn _{0,15} O ₁₉	710	66,68	12,90
$Sr_{0.6}La_{0.4}Fe_{11,6}Mn_{0,2}Zn_{0,2}O_{19}$	690	63,68	12,38
$Sr_{0.5}La_{0.5}Fe_{11.5}Mn_{0.25}Zn_{0.25}O_{19}$	670	62,79	12,27

Таблица 2

Основные магнитные параметры изотропных образцов твердых растворов Sr_{1-x}La_xFe_{12-x}Mn_{x/2}Zn_{x/2}O₁₉

Br, Тл	$_{B}H_{C}$, кА/м	(<i>BH</i>) _{тах} , кДж/м ³
0,199	90	4,90
0,131	109	3,65
0,152	84	2,79
0,123	65	2,02
0,114	62	1,76
0,126	61	1,80
	Вr, Тл 0,199 0,131 0,152 0,123 0,114 0,126	Br, Tл $_BH_C$, кА/м 0,199 90 0,131 109 0,152 84 0,123 65 0,114 62 0,126 61

Рис. 2. Зависимость магнитной энергии (*BH*)_{max} изотропных образцов La_xSr_{1-x}Mn_{x/2}Zn_{x/2}Fe_{12-x}O₁₉ от состава х

Рис. 3. Температурная зависимость удельной намагниченности насыщения твердого раствора Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉

Таблица 3

Значения температуры Кюри T_c , удельной намагниченности насыщения о при 77 К и магнитного момента n_B твердых растворов $Sr_{1-x}La_xFe_{12-x}Me_xO_{19}$ (Me – Mn, Zn, Co)

Состав	<i>Т_С</i> , К	σ при T=77 К, Гс · см ³ /г	n _B
SrFe ₁₂ O ₁₉	725	79,6	15,16
Sr _{0,7} La _{0,3} Fe _{11,7} Zn _{0,3} O ₁₉	710	70,09	13,5788
Sr _{0.7} La _{0.3} Fe _{11.7} Mn _{0.3} O ₁₉	712	68,68	13,2687
Sr _{0.7} La _{0.3} Fe _{11.7} Co _{0.3} O ₁₉	725	55,35	10,7251
$Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,15}Mn_{0,15}O_{19}$	750	50,25	9,7135

Таблица 4

Основные магнитные параметры образцов твердых растворов гексаферритов

Состав	<i>Br</i> , Тл	_в H _C , кА/м	(<i>BH</i>) _{max} , кДж/м ³
SrFe ₁₂ O ₁₉	0,199	90	4,90
Sr _{0.7} La _{0.3} Fe _{11.7} Co _{0.15} Mn _{0.15} O ₁₉	0,103	59	1,54
Sr _{0.7} La _{0.3} Fe _{11.7} Mn _{0.3} O ₁₉	0,112	70	1,92
Sr _{0.7} La _{0.3} Fe _{11.7} Co _{0.3} O ₁₉	0,115	72	1,96
Sr _{0.7} La _{0.3} Fe _{11.7} Zn _{0.3} O ₁₉	0,148	74	2,18

Из табл. З видно, что при замещении ионов стронция ионами лантана, а ионов железа ионами цинка, марганца температура Кюри для данных гексаферритов уменьшается на 13–15 К по сравнению с температурой Кюри гексаферрита стронция SrFe₁₂O₁₉. При этом удельная намагниченность падает от $\sigma =$ = 79,6 Гс · см³/г | для SrFe₁₂O₁₉до σ = 70,09 Гс · см³/г и $\sigma = 68,68$ Гс · см³/г | для твердых растворов Sr_{0,7}La_{0,3}Fe_{11,7}Zn_{0,3}O₁₉ и Sr_{0,7}La_{0,3}Fe_{11,7}Mn_{0,3}O₁₉ соответственно.

Это связано с тем, что удельная намагниченность о и магнитный момент одной формульной единицы n_в ферритов находятся в прямо пропорциональной зависимости и связаны соотношением:

$$\sigma = n_B \frac{5585}{M},$$

где *М* – молярная масса феррита; 5585 – магнитный момент одного моля магнетонов Бора.

Распределение ионов Fe^{3+} по пустотам кристаллической решетки феррита стронция $SrFe_{12}O_{19}$ с различной координацией ионов кислорода с учетом самых сильных положительных и отрицательных косвенных обменных взаимодействий отвечает следующей формуле для расчета магнитного момента n_{B} ,

выраженного в магнетонах Бора, одной формульной единицы феррита стронция SrFe₁₂O₁₉:

 $n_{R} = (\bar{1} + \bar{7} - \bar{2} - \bar{2}) \cdot 5 = 20$,

где 5 – магнитный момент иона Fe³⁺ в магнетонах Бора с пятью неспаренными 3d электронами.

Магнитные моменты 7 ионов Fe³⁺, расположенных в октаэдрических пустотах, и одного иона Fe³⁺ с пятикратной координацией ионов кислорода ориентированы в одном направлении (например, влево), а два иона Fe³⁺ в тетраэдрических позициях и два иона Fe³⁺ в октаэдрических позициях ориентированы в противоположную сторону (например, вправо). Введение немагнитных ионов Zn²⁺ в различные позиции кристалла приводит к изменению того или иного обменного взаимодействия, это и приводит к уменьшению удельной намагниченности. Установлено, что ионы Mn²⁺, Co²⁺, Ni²⁺ занимают октаэдрические позиции, это приводит к уменьшению магнитного момента. Таким образом, при замещении ионов Fe³⁺ ионами Mn²⁺ и ионами Co²⁺ наблюдается уменьшение удельной намагниченности.

Температура Кюри твердого раствора $Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,3}O_{19}$ осталась такая же, как у феррита стронция $SrFe_{12}O_{19}$, а у твердого раствора $Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,15}Mn_{0,15}O_{19}$ она оказалась на 25 К больше, чем у базового феррита стронция $SrFe_{12}O_{19}$. Остаточная индукция, коэрцитивная сила и $(BH)_{max}$ в ряду $Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,15}Mn_{0,15}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Mn_{0,3}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Co_{0,3}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Cn_{0,3}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Cn_{0,3}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Cn_{0,3}O_{19} - Sr_{0,7}La_{0,3}Fe_{11,7}Zn_{0,3}O_{19}$, как можно видеть из табл. 4, монотонно уменьшаются. Для твердых растворов гексаферритов с замещением ионов Fe^{3+} на ионы Mn^{2+} и ионы Co^{2+} эти характеристики отличаются незначительно.

Таким образом, в настоящей работе впервые получены твердые растворы на основе высококоэрцитивного феррита стронция со структурой магнетоплюмбита, в котором проведено частичное гетеровалентное замещением ионов стронция ионами лантана, а ионов железа ионами марганца, цинка, кобальта. Также впервые исследованы основные магнитные параметры: коэрцитивная сила, остаточная индукция и (*BH*)_{max}, а также удельная намагниченность и определены температуры Кюри.

Литература

1. Крупичка С. Физика ферритов и родственных им магнитных окислов. – М.: Мир, 1976. – Т. 2. – 504 с.

2. Смит Я., Вейн Х. Ферриты. Физические свойства и практическое применение. – М.: Иностр. лит., 1962. – 504 с.

3. Февралева Н. Е. Магнитотвердые материалы и постоянные магниты: Справ. – Киев: Нав. думка, 1969. – 232 с.

4. Журавлев Г. И. Химия и технология ферритов. – Л.: Химия, 1970. – 192 с.

5. Летюк Л. Н., Журавлев Г. И. Химия и технология ферритов. – Л.: Химия, 1983. – 220 с.

6. Летюк Л. Н., Балбашов А. М., Круточин Д. Г., Гончар А. В. Технология производства материалов магнитоэлектроники. – М.: Металлургия, 1994. – 354 с.

7. Cochardt A. Modified Strontium Ferrite, a New Permanent Magnetic Materials // J. Of Appl. Phys. – 1963. – T. 34, № 4. – C. 1273–1274.

8. Cochardt A. Effect of Sulfates on the Propeties Strontium Ferrite Magnets // J. Of Appl. Phys. - 1967. - T. 38, № 4. - C. 1904-908.

9. Taguchi, T. Takeishi, K. Suwa, K. Masuzawa and Y. Minach High Energy Ferrite Magnets // Supplement au Journal de Physique III de mars. – 1997.