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Measuring the energy consumption and evaluating the efficiency of 
machining processes is necessary for their optimization and for 
implementation of cleaner production. The final product quality and the 
machining process of woodworking are of great interest. The properties of 
thermally modified wood make it more resistant to fungi, moulds, and 
ligniperdous insects than natural wood, so it is increasingly used in interior 
and exterior spaces. This study examined the energy demand of the 
milling of heat-treated oak wood (Quercus petraea) by ThermoWood® 
technology. The investigated technological parameters were thermal 
modification temperature (160 °C, 180 °C, 200 °C, and 220 °C), cutting 
speed (20 m × s-1, 40 m × s-1, and 60 m × s-1), feed rate (6 m × min-1, 10 
m × min-1, and 15 m × min-1), and the material of the cutting tool. As the 
temperature of the thermal modification increased, the cutting power 
decreased due to a chemical degradation due to heating and reduced 
wood density. The lowest energy consumption was observed for the 
milling of wood treated at 220 °C with a cutting speed of 20 m × s-1, and a 
feed rate of 6 m × min-1. 
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INTRODUCTION 
 

Wood and its machining are of interest to research from various perspectives. 

Technical and technological parameters of machining as well as wood treatment 

technology are examined in terms of the electricity consumption of individual construction 

mechanisms and when turning on the relevant functions of the woodworking machine. Zein 

(2012) and Sudarsan et al. (2010) show in the results of machining centre energy 

consumption research that the energy for the cooling and control system can be considered 

a constant value, and there is a strong correlation between the input power to the power 

supply module and the input power to the main spindle drive. The drive of the positioning 

servo system consumes several times less energy than the drive of the main spindle of the 

machine tool (Liu et al. 2017).  

Several models have been developed to predict and optimize energy consumption, 

most commonly involving milling and turning operations (Moradnazhad and Unver 2017; 

Shi et al. 2019). In contrast with the production capacity and the quality of the created 

surface, information on energy demands reduces production costs (Mickovic and Wouters 

2020).  
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Scientific works have experimentally investigated the influence of technical-

technological parameters on cutting power in the milling of natural and thermally modified 

wood (Barcik et al. 2010; de Moura et al. 2011; Barcík and Gašparík 2014; Tu et al. 2014). 

Specifically mentioned trees are summer oak (Quercus robur L.), winter oak (Quercus 

petraea (Matt.) Liebl.), Norway spruce (Picea abies (L.) H. Karst.), and red meranti 

(Shorea acuminata Dyer) (Koleda et al. 2018a; Korčok 2020; Šulek 2020). The cutting 

power increased as a result of the increasing cutting speed. In terms of cutting edge wear 

and optimal use of machinery, it can be stated that the optimal cutting speed is 

approximately 40 m × s-1. Ispas et al. (2016) showed that the cutting power increased for 

all investigated beechwood samples due to increasing cut depths, revolutions (3300 and 

4830 min-1), and feed speeds (4.5, 9, 13.5, 18, and 22.5 m × min-1). 

Kubš et al. (2016, 2017), based on their research of beech and pine wood 

machining, have shown that the most important factors affecting the cutting power during 

plane milling are cutting speed, face angle of the milling cutter face, and feed speed. Larger 

differences in power have been demonstrated at different face angles of the milling cutter. 

Krauss et al. (2016) conducted a study to analyse the impact of cut depth (0.5, 1.0, 

and 2.0 mm) of the pine samples on the cutting power during plane milling. The results of 

the research showed that the cutting power during the plane milling of wood increases due 

to the increasing depth of cut. Koleda and Hrčková (2018) measured the dimensions of 

fractional particles resulting from the milling and predicted the tool wear. 

Heat-treated wood has been extensively manufactured for more than 10 years, and 

its production has been introduced to many Western European countries in response to the 

changing chemical wood treatment legislation (International ThermoWood Association 

2003). Finland pioneered the production of thermally modified wood with ThermoWood® 

in 1990. Later, ThermoWood® began to be produced in the Netherlands, Germany, 

Austria, and France (International ThermoWood Association 2003; Gaff et al. 2015). The 

primary aim of thermally modifying wood is to prepare a material that balances the 

following benefits: a lower hygroscopicity; higher dimensional stability; higher resistance 

to wood-decaying and discolouring fungi, moulds, and ligniperdous insects; maintaining 

or improving the aesthetics (colour, minimal cracks, gloss, texture, etc.); and preservation 

or improvement of the mechanical properties (strength hardness, stiffness, etc.) (Požgaj et 

al. 1997; Bengtsson et al. 2003; Boonstra et al. 2007; Boonstra 2008; Niemz et al. 2010; 

Barcík and Gašparík 2014; Aytin et al. 2019).  

It is well known that, apart from the decrease of mechanical properties in the 

process of thermal modification, the weight and density of wood are also decreased, which 

makes the wood more brittle (International ThermoWood Association 2003; Gunduz et al. 

2009; Maulis 2009; Koleda et al. 2018b; Korčok et al. 2018). Thermal treatment changes 

the chemical properties of wood, e.g. the cell wall saturation limit (Hrčka et al. 2020). 

Granular analyses of wood dust in the sanding process indicate that decreases in wood 

density cause a decrease in the number of wood dust particles (Očkajová and Banski 2009; 

Očkajová et al. 2016). 

This article evaluated the effect of the technology (i.e., temperature) of heat 

treatment, rake angle, feed rate, and cutting speed on the efficiency of energy usage in the 

planar milling of oak wood. 

 

  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Koleda et al. (2021). “Energy efficiency when milling,” BioResources 16(1), 515-528.  517 

EXPERIMENTAL 
 

Materials 
Samples of Q. petraea wood with an average age of 107 years from Vlčí jarok 

(Budča, Slovakia) were used in the experiments. The samples were made via 

ThermoWood® technology at the Arboretum of the Faculty of Forestry and Wood Sciences 

(Czech University of Life Sciences in Prague, Czech Republic) in Kostelec nad Černými 

lesy in a LAC S400/03 type chamber (Katres, Říčany, Czech Republic). The mechanical 

woodworking of samples with the dimensions of 500 mm × 110 mm × 20 mm and their 

subsequent drying and heat treatment at temperatures of 160 °C, 180 °C, 200 °C, and 220 

°C were performed using the technologies described by Hrčková et al. (2018) and Koleda 

et al. (2020). The samples were stored at a temperature of 10 °C. The samples remained in 

the chamber until they cooled to 60 °C; then, they were removed. The process of 

temperature changing itself (i.e., heating, temperature exposure, or cooling) in time is 

illustrated in Fig. 1. The density measurements and cutting conditions were as in Koleda et 

al. (2018). The samples were milled on a lower spindle milling machine FVS 

(Czechoslovakia Music Instruments, Hradec Králové, Czech Republic) and feeding 

mechanism ZMD 252/137 (Frommia, Fellbach, Germany) at the Technical University in 

Zvolen (Zvolen, Slovakia). Table 1 shows the technical parameters of the milling machine. 

The device for the power consumption measurement at milling consisted of a UNIFREM 

400 007M frequency converter (Vonsch, Slovakia) that controls the speed of a three-phase 

asynchronous motor (Fig. 2). Another part of the frequency converter is a sine filter 

SKY3FSM25 that smoothed the impulse voltage from the inverter to approximate the ideal 

sinusoidal phase with a phase shift of 120. The frequency converter evaluated the active 

motor input without losses and the engine power from the current, voltage, and efficiency 

of the motor. The cutting power was calculated as the difference between power when 

milling and power when idling. 

 

 
Fig. 1. Durations and temperatures of heat-treatment of oak wood (Quercus petraea) 
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Table 1. Technical Parameters of the Lower Spindle Milling Machine FVS and 
the Feeder 

Lower Spindle Milling Machine (FVS) Feeder (Frommia ZMD 252/137) 

Voltage System (V) 360 and 220 Feed Range (m × min-1) 2.5, 10, 15, 20, and 30 

Frequency (Hz) 50 Voltage (V) 380 

Input (kW) 4 Speed (m × min-1) 2800 

 

 
 

Fig. 2. Measuring apparatus for power measurement: (1) electrical device with frequency 
converter and sine filter; (2) asynchronous motor; (3) down milling cutter; (4) PC 

 

A double-blade wood cutter block with rake angles (γ) of 15°, 20°, and 30°, and 

interchangeable blades were used for milling with a cutting depth of 1 mm (Fig. 3). The 

cutting tool geometry, the cutting speed (20 m × s-1, 40 m × s-1, and 60 m × s-1), and feed 

rate (6 m × min-1, 10 m × min-1, and 15 m × min-1) were the same as those used by Koleda 

et al. (2018a). Three sets of knives were used when milling, which included knives 

induction hardened from material 19 573 (Wood-B Ltd., Nové Zámky, Slovakia) (set 1), 

knives from steel HSS 18% W with AlTiCrN coating (Belarusian Academy of Science, 

Minsk, Belarus) (set 2), and knives from MAXIMUM SPECIAL 55: 1985/5 steel (Wood-

B Ltd., Nové Zámky, Slovakia) (set 3). Measured data was processed using MS Excel 

(Microsoft Corporation, version 18.2008.12711.0, Redmond, WA, USA) and statistically 

evaluated by Statistica 12 (StatSoft, Tulsa, OK, USA). 

 

 
 

Fig. 3. Milling cutters with rake angles of (a) 15°, (b) 20°, and (c) 30° 
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RESULTS AND DISCUSSION 
 

Figure 4 shows the density values of the samples. The density decreased with the 

increasing temperature of the heat treatment. The natural wood sample showed the highest 

density (775.8 kg × m-3). The thermally treated sample showed the lowest density at the 

highest temperature (220 °C), which was a 21.51% decrease compared to an untreated 

sample. Thermal treatment made the wood more fragile. Hydrophilic functional groups 

began to disappear in the structures of the polysaccharides, lignin, and accompanying 

materials. 

 

 
Fig. 4. Density and heat treatment temperature (the parentheses show the decrease compared to 
natural wood) 

 

Table 2 shows the basic cutting power statistics depending on the thermal treatment 

temperature. As the temperature increased, the cutting power decreased. The highest 

cutting power was measured for the native wood and the lowest for the sample thermally 

treated at 220 °C. The decrease was caused by a change in the structure of the wood and 

its chemical composition due to temperature, which was also reflected in its lower density. 

As the experimental samples were extracted from different logs and were 

manipulated from different parts of the trunk, the structure of the examined samples 

influenced the power values recorded during milling. Further researching the heat transfers 

of thermally modified wood by a holography interferometer could help discover the values 

of the heat transfer coefficients (Černecký et al. 2013, 2017).  

 

Table 2. Basic Statistics of Cutting Power and Heat Treatment Technology 

T (°C) Number 
Average 

Power (W) 
Std. Dev. (W) Error (W) 

- 0.95% 
Interval (W) 

+ 0.95% 
Interval (W) 

N 5670 146.76 71.27 0.95 144.90 148.62 

160 5670 119.16 62.68 0.83 117.53 120.79 

180 5670 103.78 54.80 0.73 102.35 105.20 

200 5670 99.63 53.85 0.72 98.23 101.04 

220 5670 89.07 48.00 0.64 87.82 90.32 
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Figure 5 shows the influence of the cutting tool on the cutting power depending on 

the temperature of the heat treatment without considering feed energy consumption 

(Koleda et al. 2020). Cutting tool set 2 resulted in the lowest energy consumption for all 

samples, where the cutting power decreased as the temperature increased. For cutting tool 

sets 1 and 3, the values were overlapping. The highest cutting power values were recorded 

with tool set 1, whereby they overlapped with the cutting power values measured with set 

3. The different values were due to the wear and hardness of the material depending on the 

knife hardening technology, the coating of the blades, and their grinding before coating. 

As the temperature increased (thermally modified wood), the power decreased 

during milling. The reduction in milling power consumption is reported in Krauss et al. 

(2016) due to the milling of thermally treated pine wood. This is related to a change in the 

chemical composition and structure of the wood and a change in its density. 

 

 
 

Fig. 5. Analysis of variance of cutting power depending on the heat treatment temperature and 
tool set 

 

Table 3 shows the basic statistics for cutting power depending on heat treatment 

and tool set. The highest average cutting power value (159.65 W) was observed for the 

native wood machined with tool set 1. The lowest average cutting power value (84.24 W) 

was recorded for the thermally treated sample at 220 °C, which was machined with the tool 

set 2. 

Figure 6 shows the analysis of variance of cutting power versus the temperature of 

thermal modification and rake angle. As the rake angle increased, the cutting power 

decreased. For all heat treatment technologies, the lowest cutting power was achieved at a 

rake angle of 30. The lowest value (69.1 W) was measured at the rake angle of 30° for the 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Koleda et al. (2021). “Energy efficiency when milling,” BioResources 16(1), 515-528.  521 

sample treated at 220 °C, and the highest value (183.6 W) was measured at the rake angle 

of 15° for the untreated sample. This was due to a change in the force conditions for chip 

separation and a reduction in the cutting force required to separate the material.  

 

Table 3. Basic Statistics of Cutting Power Depending on Rake Angle 

γ 
(°) 

Number 
Average Power 

(W) 
Std. Dev. 

(W) 
Error (W) 

- 0.95% 
Interval (W) 

+ 0.95% 
Interval (W) 

15 9450 130.37 64.28 0.66 129.08 131.67 
25 9450 119.36 66.37 0.68 118.02 120.69 
30 9450 85.30 43.46 0.44 84.42 86.17 

 

 
 

Fig. 6. Analysis of variance of cutting power dependence on heat treatment temperature and rake 
angle 

 

Figure 7 shows the analysis of variance of cutting power depending on the rake 

angle and heat treatment temperature for each tool set. The lowest values (average power 

= 74.3 W) were measured using tool set 1 at a rake angle of 30°, and the highest (average 

power = 166.7 W) were measured using the same tool set 1 at a rake angle of 25°. 

Table 4 shows the basic statistics of cutting power depending on cutting speed. As 

cutting speed increased, the cutting power increased. Figure 8 shows the analysis of 

variance of cutting power versus temperature and cutting speed. Increased cutting speed 

resulted in increased cutting power, which was because cutting power is a product of 

elementary cutting force and cutting speed (Vasilko 2007). The highest cutting power 

(201.02 W) was measured for native wood at a cutting speed of 60 m × s-1, and the lowest 

cutting power (47.71 W) was observed for wood treated at 220 °C and a cutting speed of 

20 m × s-1. For all heat treatment technologies, the highest cutting power was achieved at 

a cutting speed of 60 m × s-1, and the lowest cutting power was achieved at a cutting speed 

of 20 m × s-1. 
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Fig. 7. Analysis of variance of cutting power dependence on rake angle and heat treatment 
temperature for tool set 1 (a), set 2 (b), and set 3 (c) 

 

 
 

Fig. 8. Analysis of variance of cutting power depending on heat-treatment and cutting speed 
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Table 4. Basic Statistics of Cutting Power Depending on Cutting Speed 

vc (m × s-1) Number Average 
Power (W) 

Std. Dev. (W) Error (W) - 0.95% 
Interval (W) 

+ 0.95% 
Interval (W) 

20 9450 61.15 26.93 0.27 60.61 61.69 
40 9450 113.11 45.99 0.47 112.18 114.04 
60 9450 160.76 61.04 0.62 159.53 162.00 

 

Figure 9 shows the analysis of variance of cutting power depending on cutting speed 

and heat-treatment temperature for each tool set. The lowest values (average power = 52.0 

W) were measured using tool set 2 at a cutting speed of 20 m × s-1, and the highest values 

(average power = 176.5 W) were obtained using tool set 1 at a cutting speed of 60 m × s-1. 

 

 

 
 

Fig. 9. Analysis of variance of cutting power depending on cutting speed and heat treatment 
temperature for tool set 1 (a), set 2 (b), and set 3 (c) 

 

Table 5 shows the basic statistics of cutting power depending on feed rate. Figure 

10 shows the analysis of variance of cutting power depending on temperature and feed rate. 

For each wood sample, the dependence of reduction of the cutting power on the reduction 

of the feed rate was demonstrated. This was due to the reduced amount of material removed 

at one time, reducing the feed rate. Therefore, the cutting force decreased. The lowest 

values of feed rate were measured for the sample heat-treated at 220 °C, and the highest 

feed rate values were observed for the native sample. 
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Table 5. Basic Statistics of Cutting Power Depending on Feed Rate 

vf (m × min-1) Number 
Average 

Power (W) 
Std. Dev. (W) Error (W) 

- 0.95% 
Interval (W) 

+ 0.95% 
Interval (W) 

6 9450 101.82 56.16 0.58 100.69 102.96 

10 9450 111.10 61.52 0.63 109.86 112.35 

15 9450 122.11 66.23 0.68 120.78 123.45 

 

 
 

Fig. 10. Analysis of variance of cutting power depending on heat treatment temperature and feed 
rate 

 

Figure 11 shows the analysis of variance of cutting power depending on the feed 

rate and heat treatment temperature for each tool set. The lowest values (average power = 

93.87 W) were measured using tool set 2 at a feed rate of 6 m × min-1, and the highest 

values (average power = 128.9 W) were measured using tool set 1 at a feed rate of 15 m × 

min-1. 
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Fig. 11. Analysis of variance of cutting power depending on feed rate and heat treatment 
temperature for tool set 1 (a), set 2 (b), and set 3 (c) 

 

Factors that influence the reduction in cutting power with respect to temperature 

are, of course, changes in the chemical composition of the wood and a reduction in density 

(Hrčka et al. 2020; Maulis 2009; Koleda et al. 2018b). 

 

 

CONCLUSIONS 
 
1. In the milling of heat-treated oak wood, it was confirmed that cutting power decreased 

while modification temperature increased. This was related to a change in the chemical 

composition and structure of the wood as well as a change in its density. The lowest 

cutting power (89.07 W) was measured at 220 °C, and the highest cutting power (146.8 

W) was observed for native wood. Therefore, the qualitative parameters of the treated 

surface and the product should be considered. 

2. The surface treatment of the cutting tool affected the cutting power. The lowest energy 

consumption for milling (84.24 W for 220 °C) was measured using knives from HSS 

18% W steel with AlTiCrN coating. The highest values (159.6 W with an untreated 

sample) were recorded for milling with knives induction hardened from material 

19 573. 

3. The cutting speed affected the cutting power. Increasing the cutting speed increased 

cutting power by increasing the cutting force. The lowest cutting power (61.15 W) was 

measured at a cutting speed of 20 m × s-1, and the highest cutting power (160.76 W) 

was measured at a cutting speed of 60 m × s-1. 

4. The rake angle influenced the cutting power. The rake angle increased, resulting in 

decreased cutting power. The lowest cutting power (83.30 W) was measured at a rake 

angle of 30°, and the highest cutting power (130.37 W) was measured at a rake angle 

of 15°. 

5. Feed rate influenced the cutting power. Increasing the feed rate resulted in an increased 

cutting power. The lowest cutting power (101.82 W) was measured at a feed rate of 6 

m × min-1, while the highest cutting power (122.11 W) was observed at a feed rate of 

15 m × min-1. 
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