Е.Д.Манцевич, Л.М.Сероглазова, канд-ты с.-х. наук (БТИ)

ВЛИЯНИЕ ОТДАЛЕННЫХ ВНУТРИВИДОВЫХ СКРЕЩИВАНИЙ СОСНЫ ОБЫКНОВЕННОЙ НА РОСТ СЕЯНЦЕВ

С развитием селекционного семеноводства большое хозяйственное значение получат гибридные семена, которые будут давать специальные гибридно-семенные плантации. Создание высокоэффективных гибридно-семенных плантаций требует подбора таких географических форм древесного вида, которые при совместном росте путем свободного переопыления между собой давали бы гибридные семена с проявлением у потомства гетерозиса. Вопрос этот пока не изучен.

Нами проводятся исследования по выявлению географических форм сосны обыкновенной с высокой комбинационной способностью. Объектом исследования является гибридно-семенной участок сосны обыкновенной, созданный в Негорельском учебноопытном лесхозе в 1959 г. порядным смешением 34 ее географических форм.

Изучение роста семенных потомств деревьев разных географических форм гибридно-семенного участка показало, что в 5летнем возрасте наиболее интенсивным ростом отличались саженцы латвийской и московской сосен. Они обгоняли не только
местную сосну, но и быстрорастущие южные формы. Повышенный прирост в высоту за последний год, более длинная хвоя,
большое количество верхушечных почек и крупная осевая почка
дают основание предполагать, что в последующие годы у латвийской и московской сосен сохранится интенсивный рост. Следует заметить, что в географических культурах они заметно отстают в росте от местной сосны, а также от южных форм.

В целях проверки высокой общей комбинационной способности латвийской и московской сосен на гибридно-семенном участке были повторно собраны семена с деревьев этих форм и минской сосны, а также были получены в качестве контрольных семена производственной заготовки из соответствующих пунктов. Определялась масса 1000 семян. Сеянцы выращивались в открытом грунте питомника и теплице.

Исследования показали, что изменчивость массы 1000 семян сосны различного происхождения подчиняется общей законо-

Таблица 1. Влияние опылителя на рост однолетних гибридных сеянцев сосны

Варианты скрещивания	Показатели роста	Номера						
	сеянцев	1			2			
		M+m	P, %	t	M±m	P,%	t	
I	h,см d к. ш., мм l к. п., см l хв.,см	2,6±0,12 1,4±0,04 11,2±0,50 2,3±0,03	4,8 2,9 4,5 1,1		3,5±0,12 1,3±0,04 11,5±0,56 2,7±0,01	3,4 3,2 4,8 0,5	- -	
П	h, см d к. ш.,мм l к.п., см lxв., см	4,7±0,12 1,3±0,04 11,4±0,22 2,8±0,02	2,5 2,5 1,6 1,0	12,3 1,0 0,4 14,3	1,3±0,04 14,6±0,47	4,0 2,8 3,2 1,5	4,8 0 4,2 2,5	
Ш	h, см d к.ш., мм l к.п., см l хв., см	4,7±0,08 1,5±0,03 11,7±027 2,4±0,02	1,8 1,7 2,3 0,9	15,0 2,0 0,5 2,8	1,4±0,03 13,1±0,22	1,8 1,9 1,7 0,9	8,0 2,0 2,5 8,5	

Примечание. I – контролируемое опыление пыльцой материнского происхожмерности: латвийская и московская формы, являясь более северными, имели семена более мелкие по сравнению с семенами местной сосны. Эта закономерность сохранялась и у семян с гибридно-семенного участка, несмотря на сложное переопыление между деревьями различного географического происхождения. Линейные и показатели массы сеянцев, выращенных из негибридных (присланных) семян, находятся в прямой зависимости от крупности семян. У гибридных же сеянцев такая связь нарушена. Хотя масса 1000 семян московской и латвийской сосен была ниже, чем у минской, их сеянцы отличались лучшим ростом и большей фитомассой. По-видимому, латвийская и московская сосны при свободном скрещивании с другими географическими формами обладают более высокой комбинационной способностью, чем местная сосна.

Наши дальнейшие исследования были направлены на изучение влияния опылителя на рост гибридного потомства. Для контролируемых скрещиваний на гибридно-семенном участке было подобрано 5 лучших по росту и семеношению деревьев московской сосны. В качестве изоляторов применялись пакеты из пергаментной бумаги размером 30 х 50 см. Макростробилы каждого материнского дерева опылялись в конце мая 1976 г. смесью пыльцы быстрорастущих житомирской и винницкой сосен, а также пыльцой материнского варианта. Опыление проводилось однократным вдуванием пыльцы через прокол изолятора с помощью резиновой груши с иглой. Всего было опылено 545 макростробилов.

материнских деревьев									
3		4				5			
M±m	P,%	t	M+m	P,%	t	M+m	P,%	t	
3,2±0,07	2,2	_	3,7±0,11	3,1	_	3,4+0,08	2,3	_	
1,3+0,02	1,8	_	$1,3\pm0,04$	2,9	_	1,2+0,02	1,7	_	
0.3 ± 0.16	1,6	_	10,9±0,33	2,9	_	$10,1\pm0,18$	1,7	_	
2,4±0,02	1,0	_	2,3±0,02	0,9	_	2,2+0,02	0,9	-	
4,8±0,16	3,3	8,9	4,2±0,11	2,5	3,3	4,9+0,09	1,8	12,5	
1,4+0,04	2,8	2,3	1,2+0,02	1,9	2,2	$1,3\pm0,03$	1,9	2,1	
3.6 ± 0.21	1,5	12,2	10,5±0,31	2,9	0,9	13,8±0,24	1,7	12,3	
2,9±0,04	1,3	11,1	2,5±0,02	0,8	6,6	2,6±0,03	1,0	11,1	
4,1±0,14	3,3	5,6	4,4±0,09	2,0	5,0	3,8±0,07	1,9	3,8	
$1,4\pm0,04$	2,5	2,3	1,3±0,01	0,8	0	$1,3\pm0,03$	2,1	2,1	
2,2±0,29	2,4	5,8	13,0±021	1,6	5,4	10,3±0,22	2,1	0,7	
2,3±0,02	0,8	3,6	$2,2\pm0,02$	0,9	3,3	$2,3\pm0,02$	0,8	3,6	

дения; ІІ – контролируемое опыление пыльцой южных форм; ІІІ – свободное опыление.

Таблица 2. Влияние опылителя на фитомассу сеянцев

	Вегетатив-	Номера материнских деревьев					
Варианты скрещивания	ные части	1	2	3	4	5	
	сеянцев	Macca	100 сеян	цев (воз	здушно-с	(ухая), г	
Контролируемое опыление пыльцой материнского происхождения	Хвоя	6,3	7,6	6,8	7,2	5,1	
	Побег	1,9	2,1	2,0	2,2	1,7	
	Корни	5,6	5,1	4,9	5,0	4,7	
	Всего	13,8	14,8	13,7	14,4	11,5	
Контролируемое опыление пыльцой южных форм	Хвоя	10,6	9,4	12,6	8,7	10,1	
	Побег	3,0	2,9	3,6	2,7	3,4	
	Корни	7,7	8,9	9,2	6,4	8,3	
	Всего	21,3	21,2	25,4	17,8	21,8	
Свободное опыление	Хвоя	9,6	7,5	7,8	8,6	7,6	
	Побег	3,5	3,1	2,8	2,6	2,1	
	Корни	6,7	7,8	6,3	5,8	5,0	
	Всего	19,8	18,4	15,9	17,0	14,7	

Анализ гибридных шишек и семян показал следующее. Количество шишек, сформировавшихся из макростробилов при контролируемом скрещивании, не обнаруживает четкой связи с происхождением пыльцы. Наблюдается лишь некоторая тенденция увеличения их числа при использовании для скрещивания пыльцы материнского варианта. Происхождение пыльцы не сказалось также на цвете, форме апофиза и величине шишек, массе 1000 семян, их цвете и выходе семян из шишек. Вероятно, проявление этих морфологических признаков контролируется главным образом генотипом материнского организма.

О влиянии опылителя на рост и фитомассу однолетних гибридных сеянцев сосны дают представление табл. 1 и 2. Более крупные сеянцы с большей фитомассой получены из семян от контролируемых скрещиваний пыльцой южных форм и при свободном скрещивании. Опыление пыльцой материнского варианта дало более мелкие сеянцы.

Как и в предыдущих случаях, связи между массой 1000 семян и линейными и весовыми показателями гибридных сеянцев не обнаруживается. По-видимому, эффект гибридизации на рост сеянцев оказывает большее влияние, чем крупность семян.

Таким образом, скрещивание московской сосны с быстрорастущими житомирской и винницкой формами, а также свободное опыление ее сложной смесью пыльцы стимулирует рост однолетних гибридных сеянцев.

УДК 630^ж232

Л.С.Застенский, канд. с.-х. наук (БТИ)

ОБЛЕСЕНИЕ КАРЬЕРНЫХ ЗЕМЕЛЬ

Исследования проводились в Белоруссии (Минский и Бешенковичский лесхозы) и Литве (Каунасский и Ионавский лесхозы) на отработанных гравийных, песчаных и меловых карьерах. Ставилась цель - выяснить влияние важнейших экологических свойств карьеров, а также технической рекультивации на искусственное облесение нарушенных территорий.

После засушливого периода культуры, даже самой устойчивой древесной породы сосны, усыхают в течение 15-30 дней. Запасы влаги в мае-июне в корнеобитаемом горизонте (0-30 см) невелики - 0,5-4,5 мм. Насыпные карьерные грунтосмеси отличаются высокой водопроницаемостью - до 10 м в сутки, небольшим капиллярным поднятием - 20-70 см. Регулятор влаги на карьерах - механический состав грунтосмесей, рельеф, осадки, глубина залегания водоупорного горизонта.

Проследим влияние некоторых факторов на состояние культур сосны. На их рост значительно влияет рельеф дна и склонов карьера (табл. 1). В Бешенковичском лесхозе гравийный карьер технически нерекультивирован, его площадь 3,4 га, глубина 10-30 м. Средние высоты сосны увеличиваются от повышенных участков (п. п. 166, п. п. 167) к пониженным (п. п. 168, п. п.