VI. ЗАЩИТА РАСТЕНИЙ

УДК 630*443.3

Н.И. Федоров, д-р биол.наук, Л.М. Неустроева, асп., (БТИ) И.И. Паромчик, канд.биол.наук (АН БССР)

РОСТ МИЦЕЛИЯ ЗИМНЕГО ГРИБА НА СРЕДАХ С БЕЗБЕЛКОВЫМ КОНЦЕНТРАТОМ КАРТОФЕЛЬНОГО СОКА

Выращивание плодовых тел съедобных грибов в искусственных условиях требует большого количества инокуляционного материала. Подготовка его проводится в два этапа: выращивание мицелия в глубинных условиях на жидкой питательной среде, а затем - на твердой. При глубинном культивировании по сравнению с поверхностным выход мицелия гриба повышается, а сроки его роста сокращаются [1]. Большое значение для роста и развития мицелия в глубинной культуре имеет состав питательной среды. Мицелий грибов, обладая высокой ферментативной активностью, способен расти на разнообразных субстратах. Поэтому подбору питательных сред уделяется большое внимание. В составе сред используют отходы сельского хозяйства и пищевой промышленности, содержащие значительные количества углерода, азота и стимуляторов роста [2]. Отмечено, что хорошим субстратом для получения биомассы грибов являются продукты, получаемые от переработки картофеля в крахмальном производстве [3,4]. Один из таких продуктов, попо технологии безотходной переработки картофеля. лучаемых безбелковый концентрат картофельного сока. Он содержит ценные питательные вещества, которые стимулируют рост биомассы некоторых грибов [5].

В данной работе мы исследовали концентрат безбелкового картофельного сока (содержание сухих веществ 46%) жак компонента питательной среды при выращивании мицелия зимнего гриба. Эти исследования проводились с целью определения среды, обеспечивающей накопление биомассы гриба.

Для опыта были использованы минеральные среды с глюкозой и пептоном (среда I) и пептоном без глюкозы (среда II). В первом случае концентрат испытывался как добавка в качестве биостимулятора, а во втором — в качестве единственного источника углерода. В каждую среду вносили различные дозы ККС (безбелковый концентрат картофельного сока). Контролем в первом варианте была минеральная среда с глюкозой и пептоном, во втором — минеральная среда с пептоном, но без глюкозы.

Питательная среда стерилизовалась. Посевным материалом служил мицелий гриба, полученный на твердой огаризованной питательной среде. В

Таблица 1. Рост зимнего гриба с различным содержанием концентрата картофельного сока

№ сре- ды	Содержание ККС в сре- де, %	рН среды		Биомасса, г/л	P = 0,05	
		началь- ная	конеч- ная		фактическое	табличное
			Пиз	гательная среда I		
1	0,25	4,87	6,5	8,71±0,83	6,59	4,30
2	0,50	4,8	6,8	9,46±0,89	6,60	4,30
3	1,00	5,62	7,15	10,8±0,83	9,15	4,30
4	1,50	5,37	7,1	11,76±0,15	13,71	4,30
5	2,00	5,12	7,5	12,42+0,54	16,25	4,30
6	6,00	5,6	6,1	$5,03\pm0,23$	6,45	4,30
7	Контроль (без ККС)	4,8	4,25	3,48±0,17		
			Пита	тельная среда Ц		
1	0,25	5,3	8.9	1,31+0,42	2,34	4,30
2	0,50	5,2	8,9	$1,72\pm0,5$	1,57	4,30
2 3 4	1.00	5,1	9,0	1,99±0,03	4,62	4,30
	1,50	4,87	9,2	2,39±0,23	8,60	4,30
5	2,00	4,80	8,7	3,33+0,50	5,45	4,30
6	6,00	4,80	6,1	4,68±0,95	5,03	4,30
7	10,00	4,80	8,3	2,78±0,18	4,52	4,30
8	Контроль (без ККС)	6,50	7,8	0,61±0,21	1	

каждую колбу вносили несколько кусочков мицелия. Гриб культивировали в колбах емкостью 750 мл, по 250 мл питательной среды. Рост гриба продолжался в течение 10 сут при комнатной температуре на качалке. Интенсивность роста определяли по накоплению биомассы мицелия и выражали в граммах абсолютно сухого веса.

Результаты влияния различных доз безбелкового концентрата картофельного сока на выход биомассы мицелия зимнего гриба представлены в табл. 1. Данные опыта показывают, что использование в средах концентрата сока дает положительные результаты. Как видно, даже самые маленькие дозы сока увеличивают накопление биомассы в одной и другой средах в два раза по сравнению с контролем этих сред.

По данным таблицы, наилучшее накопление биомассы гриба на среде I было при введении в среду 1,5-2 процентов концентрата сока. Выход биомассы в результате проведенного опыта оказался в 4 раза выше контроля.

На среде II, где нет источника углерода, лучшее накопление мицелия было при внесении от 2 до 6% сока. Эти результаты близки данным, полученным на среде I с глюкозой, но без сока. Как видим, концентрат картофельного сока может заменить в питательных средах глюкозу.

Из вышеизложенного следует, что для наиболее интенсивного роста мицелия зимнего гриба рационально использовать безбелковый концентрат картофельного сока как биостимулятор.

Литература

1. Низковская О.П. Рост грибов из порядка агарикалес в поверхностной и глубинной культурах. — В кн.: Производство высших съедобных грибов в СССР. Киев, 1978, с. 92—98. 2. Питательные среды для промышленного глубинного культивирования мицелия высших грибов/Г.Р. Морозова, Н.В. Сафонова, Т.В. Кинарев нская, А.Н. Тарасенко. —В кн.: Производство высших съедобных грибов в СССР. Киев, 1978, с. 87—92. З. Стахеев И.В. Культивирование дрожжей и грибов — продуцентов протечна на отходах переработки картофеля. — Минск, 1978, с. 165. 4. Брунов ский Ю.Ю., Борисевич А.Г. Производство и перспективы использования концентрата клеточного сока картофеля в народном хозяйстве. — Рига, 1980, с. 8—14. 5. Концентрат картофельного сока как субстрат культивирования мицелия высших съедобных грибов/А.С. Вечер, Э.Ф. Соломко, Е.Н. Скачков и др. — Докл. АН БССР, 1979, 23, № 9, с. 355—358.

УДК 630^{*}414.4

А.И. Блинцов, мл.научн.сотр. (Центральный ботанический сад АН БССР)

ИЗМЕНЕНИЕ СТРУКТУРЫ ФАУНЫ ПОЧВЕННЫХ БЕСПОЗВОНОЧНЫХ ПОД ВЛИЯНИЕМ ИНСЕКТИЦИДОВ

При проведении мероприятий по защите растений с использованием современных методов борьбы, в первую очередь химического, остро встает вопрос охраны окружающей среды, в том числе сохранения фауны полезных почвенных беспозвоночных. О значении беспозвоночных в разложении растительных остатков и образовании гумуса известно еще со времен Ч. Дарвина и из работ наших выдающихся ученых В.В. Докучаева, П.А. Костычева, Г.Н. Высоцкого и др. [1]. Но только в последнее время усилиями академика М.С. Гилярова [2—3] отдельные сведения по этому вопросу были обобщены, получили дальнейшее развитие и сформировались в самостоятельную науку – почвенную зоологию, где полностью отражена роль почвенной фауны в процессах почвообразования и улучшения плодородия почв.

Интоксикация почвы в результате химических обработок в значительной степени влияет на состав и деятельность почвенного населения [4,5]. Но так как совершенно отказаться от применения ядохимикатов в настоящее время невозможно [6], а ассортимент их постоянно расширяется (например, в 1979 г. для применения в сельском хозяйстве было допущено почти 300, а в лесном — около 100 пестицидов), всегда наибольший интерес представляют препараты, меньше загрязняющие и разрушающие естественные биогеоценозы.

При проведении истребительной борьбы с личинками майских хрущей 1

¹ Описание опытных участков и вариантов опытов см в [7].