ны и меры борьбы с ней. Пушкино, Моск.обл., 1939, 9. Борисов П.Н. Главнейшие вредители и болезни осины (Р.tremula L)) и меры борьбы с ними. – Сб.тр. ЦНИИЛХ, т. 16, Выращивание деловой осины. Л., 1941. 10. Вихров В.Е., Федоров Н.И., Кочановский С.Б. Об устойчивости осины к сердцевинной гнили. – В сб.. Пути повышения продуктивности лесов. Минск, 1966.

УДК 630^{*} 453.768.24 + 630.892.6

Н.Г.Душин, Э.Н.Мануков

К ВОПРОСУ ИЗУЧЕНИЯ СМОЛОВЫДЕЛЕНИЯ И СОСТАВА ЛЕТУЧЕЙ ЧАСТИ ЖИВИЦЫ СОСНЫ(PINUS SILVESTRIS L.) ПРИ ПОРАЖЕНИИ КОРНЕВОЙ ГУБКОЙ И ЭНТОМОВРЕДИТЕЛЯМИ

Количественно-качественный метод изучения резинозиса хвойных при повреждении их короедами является одним основных в исследованиях по антибиозу, на что указали А.С. Исаев и Г.А.Гирс [1], первыми выполнившие работы данного направления по лиственнице. Многие авторы [2, 5, 11], отмечают решающее значение отдельных компонентов, в частности \triangle^3 карена, в проявлении устойчивости сосны к поражению как грибами, так и насекомыми.

Мы занимались предварительной опытной проверкой методического подхода к изучению этого вопроса на объекте сосна.
Опыты проведены в Минском лесхозе, в период окончания лёта большого соснового лубоеда (Blastophagus piniperda L).
В 40-летнем сосновом насаждении, в сильной степени пораженном корневой губкой, было подобрано 15 деревьев различного физиологического состояния. Общее количество моделей
разделили на 3 группы по признакам повреждения их большим
сосновым лубоедом.

К первой группе относили внешне здоровые деревья без видимых признаков поражения стволов короедами; ко второй относили деревья ослабленные, но отбившие попытки поселения вредителей и к третьей – деревья, успешно заселенные вредителями. Из каждого дерева на высоте 1,3 м разработанным нами методом подсочки были взяты пробы живицы. Живицу, выделившуюся в течение 24 ч, собирали в стеклянные предварительно взвешенные ампулы, которые затем повторно взвешивали, заполняли азотом, запаивали и хранили в холодильнике при -3°С.

Каждую отобранную пробу живицы взвешивали и от нее с водяным паром отгоняли летучую часть (скипидар), которую экстрагировали диэтиловым эфиром, сушили Mg SQ и после отгонки растворителя взвешивали. Качественный анализ скипидаров проводили методом газожидкостной хроматографии (ГЖХ) на приборе "Вырухром" на колонке 6000 х Змм. Твердой фазой служил хроматон N, жидкой трикрезилфосфат (ТКФ – 15%), температура термостата – 130°, газ носитель— азот, давление газа на входе — 0,8 атм.

Количественный состав отдельных компонентов в скипидаре рассчитывали по площади пиков методом внутренней нормализации.

Метод ГЖХ позволил установить наличие в скипидаре 17 отдельных компонентов. Часть из них (8 компонентов), которые содержатся в незначительном количестве (0,2% и менее), не учитывались при анализе изменения состава живицы деревьев в зависимости от поражения энтомовредителями.Данные по остальным компонентам приводятся в табл. 1.

Из приведенных в таблице данных следует, что количество живицы, выделяемое каждой из групп деревьев, сильно отличается. Так, деревья 2-й группы выделяют живицы в 1,5—4 (в среднем в 3) раза меньше, а деревья 3-й группы в 7—30 (в среднем в 10) раз меньше, чем деревья 1-й группы (условно здоровые). Закономерностей в количественном содержании летучей части живицы для исследованных групп деревьев не наблюдается. Отмечаются некоторые общие закономерности в количественном содержании отдельных компонентов

в каждой из групп модельных деревьев. Так у деревьев 2-й и 3-й групп увеличивается содержание $\mathcal L$ -пинена до 59.6% и 57.6% соответственно против 45.9% у деревьев 1-й группы (условно здоровых).

Практически в два раза у деревьев 2-й и 3-й групп уменьшается содержание Δ -карена. О подобных закономерностях сообщали Р.Смит [11], П.А. Положенцев [6], С.Ф. Негруцкий [7] и др. У деревьев 2-й и 3-й групп имеется также тенденция к увеличению β -фелландрена до 1,9% и 3,5% против 1,1%, и к уменьшению β -терпинена соответственно с 0,3% (деревья 1-й группы) до 0,2% и 0,1%.

Закономерности в изменении количественного состава компонентов, характерные для групп деревьев в целом, не обнаружены у индивидуальных деревьев. Так, высокое содержание —пинена (60,8% и 75%) наблюдается у отдельных деревьев 1-й группы и, напротив, низкое у деревьев 2-й и 3-й групп

Таблица 1. Характеристика смоловыделения деревьев сосны

№ MO-	Коли-	Количест	во летучих	Количество смоля-						
дельных	чество	масел в	пробе	ных кислот в пробе						
деревьев	выделен-									
	ной жи-	Г	%	Г	%					
	вицы за									
	сутки,	-		-						
	г/дм	3		_						
1	1 2		4	5	6					
	Условно здоровые деревья, без									
18	2,36	0,87	20,6	3,35	79,4					
24	1,93	0,67	29,2	1,29	70,8					
6	1,58	0,60	25,2	1,77	74,8					
14	0,93	0,38	29,3	0,92	70,7					
8	0,87	0,52	21,9	1,86	78,1					
среднее	среднее 1,53		25,2	1,84	74,8					
		Деревья ослабленные, с отбит								
1	1,04	0,63	22,1	2,22	77,9					
12	0,57	0,49	32,2	1,03	67,8					
- 11	0,52	0,38	37,6	0,63	62,4					
13	0,43	0,28	30,8	0,63	69,2					
10	0,38	0,22	20,6	0,77	79,4					
среднее	0,59	0,46	28,7	1,06	71,3					
		Деревья, заселенные								
7	0,21	0,15	26,6	0,44	73,4					
17	0,17	0,35	25,0	1,05	75,0					
19	0,14	0,19	23,7	0,83	76,3					
. 2	0,09	0,07	25,9	0,20	74,1					
5	0,05	0,11	22,8	0,33	77,2					
среднее	0,13	0,17	24,8	0,57	75,2					

(14,4%, 37,8%). То же самое можно сказать и в отношении Δ -карена - высокое его содержание отмечено у отдельных деревьев 2-й и 3-й групп (41,5%, 63,5%) и низкое - у отдельных деревьев 1-й группы (17,1%).

Различия в содержании компонентов в большей степени объясняются индивидуальной изменчивостью в качественном составе живицы у отдельных деревьев, о чем имеются сведения

в патологическом очаге, Смш. (A_2B_2)

Качественный состав скипидара по ГЖХ											
d-		β-	4-	d-		β-	8-				
пинен	кам-	пи⊶	ка-	терпи-	дипен-	фел-	терпи⊷	терпи-			
	фен	нен+	рен	нен	тен	лан-	нен	нолен			
		мир-				дрен	1 1				
		цен	- 7	1 3		-					
7	8	9	10	11	12	13	14	15			
признаков внешнего ослабления											
_											
21,4	0,2	•	63,6	0,4	0,5	1,6	0,5	4,6			
27,3		7,7			3,5	1,1	0,4	2,9			
		4,5			0,7			0,8			
_	_		_	0,2	-	-	0,4	2,8			
•	0,6	9,4		0,2		1,5	-	2,8			
45,9	0,5	6,3	40,5	0,2	1,8	1,1	0,3	2,8			
попыт	попытками поселения										
37,8	0,5	12,8	41,5	0,2	2,9	1,2	0,3	2,1			
64,8	0,6	4,6	23,4	0,1	0,9	2,7	0,2	2,4			
		14,2	0,1	-	16,9	0,8	_	0,3			
42,2	0,6	9,9	30,4	0,2	8,5	4,0	0,4	3,2			
	1,1	4,9		-	5,4	0,8	-	0,2			
59,6	0,7	9,3	19,1	0,1	6,9	1,9.	0,2	1,6			
вреди	т ел я мі	T + _									
72,9	0,3	9,8	10,7	0,1	3,1	0,7	-	2,6			
57,4	0,7	10,6	20,3	0,1	2,4	6,6	0,1	1,5			
58,7	0,4	7,8	17,9		2,1	5,3	0,2	5,7			
14,4	0,2	6,1	63,5	0,3	0,8	2,8	0,2	10,7			
84,4	0,6	11,3	0,1		0,9	2,1	- 4	0,3			
57,6	0,5	9,1	22,5	0,1	1,7	3,5	0,1	4,2			

в литературе [8]. Широкую вариацию количественного содержания отдельных компонентов живицы отмечал А.Г.Коробченко [9]. Он же подчеркивал отсутствие коррелирующих закономерностей между физиологическим состоянием деревьев и качественным составом компонентов. На основании массовых перечетов (25 пробных площадей в насаждениях, пораженных корневой губкой) мы отметили [10], что весь свежий сухостой на 100% заселяется стволовыми вредителями.

Таким образом, успешность поселения вредителей на ослабленных соснах в большей степени зависит от количественной реакции смоловыделения деревьев при внедрении жуков.

Литература

1. Исаев А.С., Гирс Г. А. Взаимодействие дерева и насекомых - ксилофагов. Красноярск, 1975. 2. цев П.А. и др. Роль живицы в устойчивости сосны к вой губке. - В кн.: Охрана природы Центрально- черноземной полосы. Харьков, 1960. З. Положенцев П.А. и др. Онекоторых особенностях состава живичного скипидара больных деревьев сосны. - Лесн. хоз-во, 1969, № 8. 4.СмелянецВ.П. Качественные различия живицы как фактор устойчивости разных видов сосен к вредным насекомым. - Защита 1968, №8. 5. Руднев Д.Ф. и др. Причины различной устойчивости сосны к ее вредителям. - Лесн. хоз-во. 1970. №12. 6. Положенцев П.А. О составе и токсичности живицы сосны в очагах корневой губки. - Лесн, журнал, 1970, №2. 7. Негруцкий С.Ф. Корневая губка. М., 1973. 8. шев И.И. О химическом составе живицы сосны кулундинской. - Лесн. журнал, 1969, №2. 9. Коробченко А.Г. скипидара сосны обыкновенной в условиях поражения корневой губкой. - В сб.: Лесоводство и агролесомелиорация, вып. 40. Киев, 1975, 10, Горячева В.И., Душин Н.Г. О роли стволовых вредителей в усыхании сосны в очагах корневой губки. - В сб.: Пути внедрения прогрес, методов защиты растений в с.-х. произв. Рига, 1976. 11. Smith R.H. Effect monoterpene vapans on the western pine Dendroctonus brevicomis Lec. (Coleoptera: Scolytidae) - J.Ecol. Entomol. v. 58, №3, 1965.

УДК 630^{*} 414 + 630^{*} 453.764.1

А.И. Блинцов

ПРИМЕНЕНИЕ ГРАНУЛИРОВАННЫХ ИНСЕКТИЦИДОВ В БОРЬБЕ С ЛИЧИНКАМИ МАЙСКИХ ХРУЩЕЙ

В системе совершенствования химического метода борьбы не последнюю роль играет изыскание не только новых, более эффективных и в то же время безопасных для окружающей среды пестицидов, но и использование их в таких препаративных формах, которые бы полнее отвечали интересам лесозащиты и охраны природы.