Ш. ТАКСАЦИЯ И ЛЕСОУСТРОЙСТВО

УДК 630* 624:681.31

О.А.АТРОЩЕНКО, канд. с.-х. наук (БТИ им. С.М.Кирова)

СИСТЕМА ПРОГНОЗА РОСТА ДРЕВОСТОЕВ

Система прогноза роста древостоев на ЭВМ необходима для актуализации лесного фонда республики, разработки программ рубок ухода и программ ведения лесного хозяйства [1]. Задача рассматривается с позиций системного подхода, с помощью которого устанавливается направление исследований и предопределяется создание систем информации, планирования и принятия решения. Система информации включает сбор и обработку лесотаксационных данных. В системе планирования создаются альтернативные варианты моделей прогноза роста древостоев, в системе принятия решения выполняется оценка точности и надежности моделей и отбор оптимальной модели.

Залача не может быть решена аналитически на настоящем уровне знаний, поэтому используется метод имитационного моделирования [2,3]. Во-первых, определяется цель моделирования и выдвигается ряд гипотез относительно компонентов модели, производится сбор и статистическая обработка лесотаксационных данных. Имитационная модель — система регрессионных уравнений, записанных в память ЭВМ, на основе которых имитируется рост древостоя. Параметры регрессионных моделей связи оцениваются способом наименьших квадратов по стандартной программе множественного линейного регрессионного анализа с соблюдением статистических оценок [4]. При надежных показателях (значимость факторов, достоверность регрессии и т.д) производится экспериментирование с моделями на ЭВМ и оценка их точности в сравнении с данными таксации древостоев на постоянных пробных площадях, таблицами хода роста и т.д. Выбор оптимальной (для практического применения) модели осуществляется исходя из статистических показателей, точности и надежности ее, простоты измерения в лесу показателей, представленных в модели независимыми переменными.

Новые, более точные лесотаксационные данные послужат совершенствованию модели, поэтому система прогноза роста древостоев должна быть гибкой, информационно-развивающейся в виде алгоритмов и программ на ЭВМ, позволяющей непрерывно разрабатывать и совершенствовать модели прогноза роста древостоев.

По программе "Выбор" выполняется отбор насаждений по ярусам, составу, породам, классам бонитета, полнотам и возрастам. Информация представлена в банке данных "Лесной фонд БССР"

(около 1 млн. таксационных выделов) и материалов перечислительной таксации сосновых древостоев (700 пробных площадей). По программе "Статистика" осуществляется случайный отбор древостоев, группировка их по уровням производительности и режимам ухода, статистическая обработка данных [1].

Программа "Бонитет" используется для аналитического выравнивания таксационных показателей с возрастом древостоев пофункции Г.Бакмана и представления данных в виде таблиц хода

роста.

По программе "Ошибка" вычислялись систематические ошибки глазомерного способа таксации лесов, сравнивая нескорректированные данные лесоустройства с материалами перечислительной таксации древостоев. Модель связи систематических ошибок с возрастом (А) и классом бонитета (Н 100) имеют следующий вид:

$$S = B_0 + B_1 A + B_2 H100 + B_3 H100 \cdot A,$$

где S — систематическая ошибка, %.

Корректировка данных глазомерной таксации выполняется по программе "Коррект". Скорректированные данные вводятся в программу "Бонитет", где получаем регрессионные модели роста

древостоев.

Программа "Прирост" предназначена для вычислений среднепериодического текущего прироста (абсолютного и относительного) древостоев по высоте, диаметру и запасу, подготовки регрессионных моделей связи прироста с таксационными показателями. По программе "Прогноз" выполняется эксперимент с моделями на ЭВМ, оценка их точности и надежности. Программы написаны на ФОРТРАНе-IV в ДОС ЕС ЭВМ.

Так как разрабатываются модели прогноза, то среднепериодический текущий прирост, например по высоте, вычисляется по формуле

$$Z_{H}^{\text{TeK}} = \frac{H_{a+10} - H_{a}}{10}, \tag{1}$$

где $Z_{\rm H}^{\rm тек}$ — абсолютный среднепериодический прирост древостоя по высоте (за 1 год), м; H_a — средняя высота древостоя в настоящий момент, м; H_{a+10} — средняя высота древостоя через 10 лет, м.

Процент прироста равен:

$$P_{H} = \frac{Z_{H}^{\text{TeK}} \cdot 100}{H_{a}}$$
 (2)

Выбор формы моделей связи текущего прироста с таксационными показателями древостоев изучен по исследованиям Н.П.Анучина, В.К.Захарова, К.Е.Никитина, В.В.Антанайтиса, Н.Н.Свалова,

А.Г.Мошкалева, А.З.Швиденко, P.Kilkki, A.Sullivan и других авторов. Оценке на ЭВМ подвергались следующие группы моделей связи:

$$lg y = b_0 + b_1 lg A_1 + b_2 lg^2 A_1 + b_3 lg H100;$$

$$Y = f (A_1, H100);$$
(3)

$$\lg y = b_0 + b_1 \lg A_1 + b_2 T + b_3 \lg H100;$$
 (4)

$$\lg y = b_0 + b_1 \lg A_1 + b_2 \lg G_1 + b_3 (1 - A_1/A_2) H100;$$

$$\lg G_2 = b_0 + b_1(A_1/A_2) \lg G_1 + b_2(1 - A_1/A_2) + b_3(1 - A_1/A_2)$$
 (5) + b₃(1 - A₁/A₂)H 700;

$$\log M_2 = b_0 + b_1 H 100 + b_2 (A_1/A_2) \log G_1 + b_3 (1 - A_1/A_2) H 100; (6)$$

$$M_2 = f(A_1, A_2, G_1, H 100),$$
 (7)

где у — абсолютный или относительный среднепериодический текущий прирост по таксационному показателю; A_1 , A_2 — возраст древостоя в настоящий момент (A_1) и через 10 лет (A_2) ; G_1 , G_2 — сумма площадей сечения древостоя теперь (G_1) и через 10 лет (G_2) ; H100 — индекс класса бонитета (средняя высота в 100 лет); T — значение таксационного показателя.

В системе планирования выполнена оценка параметров более 1000 регрессионных моделей связи таксационных показателей древостоев по классам бонитета, уровням производительности и режимам ухода.

Сумма площадей сечения древостоя вычислена через запас и видовую высоту, которая определяется по формуле:

$$HF = 1,1416 + 0,4161 H - 0,5608 HD^{-2} + 0,0086 H 100,$$
 (8)

где H — средняя высота древостоя; Д — средний диаметр древостоя.

Модель (8) получена по данным перечислительной таксации сосновых древостоев, объясняет 97% вариации видовых высот с относительной ошибкой 10%. Модели абсолютного прироста по высоте и диаметру (3) объясняют 80-98% вариации зависимой переменной с относительной ошибкой 5-15%. Модели абсолютного текущего изменения запасов имеют значительные относительные ошибки (15-60%).

Модели прогноза прироста в зависимости от возраста и суммы площадей сечения древостоя (4; 5) имеют значимые и устойчивые показатели.

Процент прироста с ошибкой 15-30% можно оценить по моделям (3; 4). Хорошие статистические показатели получены в

Среднеквадратические ошибки моделей прогноза роста сосновых древост

									4	-	L Poor	-	-Form Form Company Therefore	Thenor	TOEB			
Режим			Bы	Высота					Див	Диаметр			14		Запас	21		
VXOTA								1.	TOIL	по таблицам	am							
	Багин	Багин- ского	Ми	Мирош- никова	Мих: вича	Михне- вича	Bai	Багин-	Ми	Мирош- никова		Михне-	Багин-	H-	Мирош	OIII-	Михне	не-
	ZH	PH	Z	P.	Z	P	Z	4	Z	d	7	٥	7	Д	7	D	7	6
		1	G	C	E				A	D	Q		M	M	M M	M	Z _M	r M
M	1,1	4,1	1,7	3,0	2,3	2,1	2,5	3.6	4.0	2.7	1.6	5.	1.3	1.9	10.6	L 4	0 00	0
D	1,7	2,5	2,3	1,9	2.9	2.1	2.5	6.6	3 7	4.1	66	0 0	0,0	3 0	1 2		2007	0, 10
E→	15	3.4	0	0 4	0 0			1 0		1 6	1, 0	2,4	1,0	7,0	6,0	4,5	Te,1	۲,5 ک
M-T P HOROTO	0 1	, ,	2 0	, d	2 c	7,7	7,7	σ,Τ	ν, Σ	7,7	2,3	2,3	58,7	2,0	34,7	5,3	7,3	3,1
WOLLD LESION	T,5	2,4	L,9	2,4	2,2	۲. ور	2,4	ಬ್ಳು	2,5	2,0	3,9	2,5	4,5	1,2	5,0	5,1	14,3	2.2

моделях прогноза сумм площадей сечения (6) и запасов (7). Модели по режимам ухода и уровням производительности имеют меньшую относительную ошибку в сравнении с моделями, разработанными в целом для сосновых древостоев.

Для оценки точности прогноза по моделям и их проверки в программу "Прогноз" введены данные таблиц хода роста сосновых древостоев БССР трех типов (В.Ф.Багинского, В.С.Мирошникова, В.П.Михневича). Запасы и суммы площадей сечения древостоев из таблиц хода роста соответственно умножены на 0,9 (В.Ф.Багинского), на 0,7 (В.С.Мирошникова) и на 0,5 (Ф.П.Михневича). Отклонения прогноза по моделям от данных таблиц хода роста вычислены по 10-летиям с определением среднеквадратической ошибки в целом для периода 30 - 140 лет (табл. 1). Эксперимент с моделями показывает (модели типа 3), что для прогноза абсолютного текущего изменения по запасу лучше подходят модели, разработанные для соответствующего режима ухода. Например, модель режима М (полнота 0,8 - 1,0) хорошо согласуется с таблицами В.Ф.Багинского (при полноте 0,9), а модель режима Т (полнота 0.5-0.4) дает ошибку 58.7%. Модели прогноза процента прироста имеют небольшие отклонения (2 - 5%) от данных таблиц хода роста.

Имитационная система прогноза роста древостоев представлена в виде моделей связи, записанных как файлы в память ЭВМ. Ввод информации — древесная порода, коэффициент состава, класс бонитета, таксационные показатели древостоя. Для насаждений, пройденных рубками ухода, вводятся: запас вырубленной древесины и число вырубленных деревьев. По представленному алгоритму и программе ЭВМ на основе моделей связи имитирует рост древостоя [7].

Предлагаемая система прогноза роста древостоев оценивалась по данным глазомерной таксации чистых сосновых насаждений Кличевского лесхоза в 1970 г. с проверкой по материалам выборочной таксации этих древостоев в 1980 г. (табл. 2).

Прогноз выполнен по следующим моделям:

$$\begin{split} \lg P_{\rm H} &= 1,9067 - 0,4152 \lg A - 0,2412 \lg^2 A + 0,1955 \lg H100; \\ \lg P_{\rm D} &= 1,7597 - 0,4002 \lg A - 0,2156 \lg^2 A - 0,1275 \lg H100; \\ \lg P_{\rm M} &= 2,3102 - 0,2026 \lg M - 0,909 \lg^2 A - 0,415 \lg H100. \end{split}$$

Отклонения получены сопоставлением данных прогноза и выборочной таксации древостоев.

Применение моделей прогноза роста не исключает ошибок глазомерного способа таксации насаждений. Ошибки при глазомерной оценке средней высоты и полноты древостоев дают ошибки в оценке и прогнозе запасов древостоев (табл. 2).

Повышение точности прогноза роста древостоев — дорогостоящая работа, связанная с увеличением затрат на таксацию лесов

П. п.		Таксация											
		Глазомерная (1970 г.)						Выборочная (1980 г.)					
	Класс бони- тета	A	Н,м	Д,см	М,м ³	П	A	Н,м	Д,см	М,м ³	п		
1	f	65	20	20	220	0,7	75	24,3	23,7	220	0,53		
2 3	1	70	21	22	200	0,6	80	25,2	28,0	256	0,60		
3	11	60	17	20	180	0,7	70	19,4	22,0	199	0,60		
4	lĬ.	75	19	26	150	0,5	85	21,0	26,2	204	0,56		
5	11	85	23	28	300	0,8	95	26,0	29,2	360	0,89		
Прог	ноз с 197	0 на	1980	rr.	110				Откло	нения, %			
1	1	75	22,2	22,8	249	0,75	2	-9,5	-3,9	+13,2	+35,8		
2	1	80	23,6	24,8	225	0,68		-6,8	-12,9	-13,8	+13,3		
3	П	70	19,1	23,1	207	0,70)	-1,6	+5,0	+4,0	+16,7		
4	11	85	20,8	26,8	169	0,5	L	-1,0	+2,3	-20,7	-9,8		
5	11	95	24,8	30,8	330	0,8	2	-4.8	+5.5	-9,1	-8,5		

(внедрением выборочных методов), причем затраты возрастают в несколько раз быстрее, чем точность прогноза [2]. Выбор рационального уровня точности моделей прогноза лежит в границах, определяющих гармоническое сочетание точности таксации насаждений, структурной и функциональной точности модели, точности вычислительных алгоритмов и затрат на создание системы прогноза. Скорректированные данные глазомерной таксации лесов как массовые материалы, охватывающие многообразие условий роста и развития насаждений, можно использовать для разработки лесотаксационных нормативов, системы моделирования и прогноза роста древостоев.

ЛИТЕРАТУРА

1. Атрощенко О.А., Костенко А.Г. Направления применения моделей роста леса (на примере БССР). — Обзор информ./Бел НИИНТИ. Минск, 1980. — 46 с. 2. Атрощенко О.А. Современное направление моделирования роста леса на ЭВМ. — В кн.: Лесоведение и лесное хозяйство. Минск, 1981, вып. 16, с. 79—83. 3. Клейнен Д.П. Статистические методы в имитационном моделировании. — М., 1978, вып. 1.—221 с. 4. Атрощенко О.А. Регрессионные модели связи диаметров и высот деревьев в березовых древостоях. — В кн.: Лесоведение и лесное хозяйство. Минск, 1982, вып. 17, с. 84—87.