В.В.ЦАЙ, И.А.ЦЫКУНОВ, канд-ты с.-х. наук (БТИ им. С.М.Кирова)

ВЛИЯНИЕ БЕРЕЗЫ, ЕЛИ И ОСИНЫ НА ФРАКЦИОННЫЙ СОСТАВ ГУМУСА ПОЧВЫ

Работами многих почвоведов доказано, что образование гумуса от распада исходных органических остатков до синтеза специфических гумусовых веществ связано с жизнедеятельностью микроорганизмов и выделяемыми ими и высшими растениями ферментами. Минерализацию органического вещества осуществляет наиболее активная бактериальная флора, образующая гумус, хорошо насыщенный гуминовыми кислотами, грибная же флора способствует образованию кислого гумуса типа фульвокислот.

Направленность процессов синтеза и разрушения, свойственная определенному типу почвообразования, обусловливает и специфическую природу гумуса.

Наиболее глубокое и полное изучение органического вещества

различных почв изложено в работах многих авторов [1,2,3].

Состав и свойства гумуса определяются различным отношением главных групп гумусовых веществ и формами их связи с минеральной частью почвы, свойствами гуминовых кислот и фульвокислот. В естественных природных условиях почвенному гумусу присуща большая динамичность и подвижность, что обусловлено постоянно протекающими процессами синтеза и разрушения органического вещества.

Изучением влияния лесной растительности на состав гумуса занимались многие авторы. Однако этот вопрос остается и до на-

стоящего времени предметом изучения.

Для изучения влияния ели, березы и осины на фракционный состав гумуса заложено 3 п. п. в черничном типе леса. На них проведены все лесоводственно-таксационные измерения. Результаты обработки гаксационных показателей даны в табл. 1. На каждой пробной площади сделано полное морфологическое описание, взяты образцы почв и определены механический состав и агрохимические показатели почв. Почва на всех трех пробных площадях одинаковая - дерново-подзолистая глееватая на супеси легкой, подстилаемой песком рыхлым. По результатам морфологического описания и механического анализа почвы имеют двучленное строение. Верхняя часть профиля представлена супесью рыхлой до глубины 100 - 120 см, а ниже - песком рыхлым. Мощность слоя супеси по пробным площадям колеблется незначительно, степень влажности почв различается в небольших пределах. В верхней части профиля нормальные условия увлажнения, а в нижней периодически избыточное увлажнение, что привело к заметному оглеению. Из данных агрохимических анализов видно, что реакция сре-

Средние таксационные показатели насаждений

m		- /				
Запас на 1 га при P = 1,0	208	299	333	50.00		
Запас Средний на 1га прирост, 3	4,7	4,0	5,2		198	
Запас на 1га 3	361	212	260			
Количество Запас Средний деревьев на 1ra прирост, на га, шт. м 3 м 3	718	436	583			
Полнота	0,71	0,71	0,78	Garage Ga Garage Ga Garage Garage Garage Garage Garage Garage Garage Garage Garage Ga Garage Garage Garage Ga Garage Garage Garage Garage Garage Ga Ga Garage Ga Ga Garage Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga		
Бонитет	1	1	1	in En	7834	
ние Н, м	25,7	24,3	22,4	000 III		
т, Срепние Д, см Н, м	24,3	24,7	21,9			
Возраст, пет	76	56	20			
Порода	臼	Ф	oc	nami aum		
Состав тип леса	10 Е.	10 Б.	10 Ос. черн.			
П. п.	-	63	6	90	L ENG L ENG L L L L L L L L L L L L L L L L L L L	ennen en propie en trois en en en en en en en en en en en en en e

Фракционный состав гумуса

П. п.	Горизонт и глубина взятия об- разца, см	C, %	Гуминовые кислоты					Фу	Негид-	$C_{\Gamma K}$			
			фракции		S ₁	фракции				S ₂	роли-	Сфк	
			I	II	III	1	I ^a	I	II	III	2	зуемый остаток	фк
1	$\frac{A_1}{5-15}$ 1,00	1.004	0,140	0	0,011	0,151	0,236	0,195	0	0,107	0,538	0,315	0,28
		1,004	13,94	0	1,10	15,04	23,51	19,42	0	10,65	53,58	31,38	
	A ₂	0,206	0,036	0	0,003	0,039	0,042	0,036	0	0,012	0,090	0,077	0,43
	35-45		17,47	0	1,46	18,93	20,39	17,48	0	5,82	43,68	37,37	
2	A ₁	2,512	0,265	0,114	0,158	0,537	0,069	0,206	0,054	0,208	0,537	1,438	1,00
	5—15		10,55	4,53	6,30	21,38	2,75	8,20	2,15	8,28	21,38	57,24	
	\mathtt{A}_2	0,466	0,073	0,012	0,003	0,088	0,031	0,049	0,016	0,058	0,154	0,224	0,57
	30-45		15,66	2,58	0,60	18,84	6,65	10,52	3,43	12,45	33,04	48,12	
3	_A ₁	2,012	0,237	0,084	0,161	0,482	0,026	0,205	0,010	0,144	0,385	1,145	1,25
	10-20		11,77	4,18	8,00	23,95	1,29	10,18	0,49	7,17	19,13	56,92	
	A ₂	0,383	0,067	0,014	0,003	0,084	0,008	0,090	0	0,012	0,110	0,189	0,76
	30-40		17,49	3,66	0,78	21,93	2,09	23,49	0	3,13	28,72	49,34	

 Π римечание. C, % - κ массе почвы κ общему углероду

30

ты кислая по всему почвенному профилю, сумма поглощенных эснований невысокая, содержание подвижных форм фосфора, калия, железа низкое и достаточно высокое алюминия.

Фракционирование гумуса проведено по методике В.В.Пономаревой и Т.А.Плотниковой [4]. Содержание общего углерода эпределено по методу И.В.Тюрина. Данные результатов анализа представлены в табл.2. Из таблицы видно, что содержание углерода в гумусовом горизонте колеблется от 1,004 до 2,512%. В подзолистом горизонте содержание углерода резко падает до 0,206 — 0,466%. Согласно показателям гумусового состояния почв [5], тип гумуса на п. п. 2 и 3 фульватно-гуматный по соотношению $C_{\Gamma K}$:

бурые гуминовые кислоты находятся в свободном состоянии или в связи с подвижными полуторными окислами и содержание их колеблется от 13,55 до 17,49% от общего углерода почвы.

Содержание прочно связанных с минеральной частью почвы гуминовых кислот в верхнем горизонте почв п. п. 1 низкое, а второй и третьей п. п. 2 и 3 — высокое.

Гуминовые кислоты, связанные с кальцием в почвах п. п. 1, отсутствуют, а на п.п. 2 и 3 они есть, но содержание их очень низкое (меньше 20% по отношению к общему количеству гуминовых кислот). Это объясняется тем, что при разложении опада лиственных пород высвобождается кальций, который способствует закреплению гумусовых веществ, однако большая их часть остается подвижной.

Фульвокислоты изучаемых почв представлены в основном 1^a и 1 фракциями. Самой высокой активностью обладают фульвокислоты 1^a фракции, и они могут свободно передвигаться с почвенным раствором вниз по профилю. Наибольшее содержание таких форм гумусовых веществ в почвах под еловыми насаждениями, а в почвах под лиственными насаждениями их незначительно. В почвах под лиственными насаждениями фульвокислоты 1^a фракции в

горизонте A_2 содержатся в большом количестве. Это говорит о том, что под лиственными насаждениями подзолистый процесс все же остается еще выраженным. Содержание фульвокислот, прочно связанных с минеральной частью почвы, низкое в почвах всех насаждений.

Негидролизуемый остаток в почвах елового насаждения составляет третью часть от общего количества углерода, а под лиственными насаждениями — больше половины.

Отношение гуминовых кислот к фульвокислотам в почве елового насаждения оказалось очень низким, березового — равным глинице, а осинового — даже больше единицы. Вероятно, в почвах осинового насаждения был более оптимальный водно-воздушный режим. В нижних горизонтах почв под лиственными насаждениями счет увеличения содержания фульвокислот отношение гуминовых кислот к фульвокислотам ниже единицы.

Таким образом, возрастание в составе гумуса содержания фульвокислот фракции \mathbf{I}^a указывает на большую миграцию органического вещества в почвах под еловыми насаждениями. Лиственные породы береза и осина способствуют накоплению менее растворимого гумуса.

ЛИТЕРАТУРА

1. Александрова Л.Н. Органическое вещество почвы и процессы его трансформации. — Л., 1980. — 287 с. 2. Кононова М.М., Бельчикова и кова Н.П. К изучению природы гумусовых веществ приемами фракционирования. — Почвоведение, 1960, № 11, с. 1 — 9. 3. Тюрин И.В. Органическое вещество почвы и его роль в почвоведении. — М., 1965. — 318 с. 4. Пономарева В.В., Плотникова Т.А. Методика и некоторые результаты фракционирования гумуса черноземов. — Почвоведение, 1968, № 11, с. 104 — 117. 5. Гришина Л.А., Орлов Д.С. Система показателей гумусового состава почв. — Вкн.: Тез. докл. У Всесоюз. съезда почвоведов. Минск, 1977, вып. 2, с. 3 — 6.

УДК 630* 114.354

Е.М.НАРКЕВИЧ, канд. с.-х. наук (БТИ им. С.М.Кирова)

ВЛИЯНИЕ ХВОЙНО-ЛИСТВЕННЫХ НАСАЖДЕНИЙ НА КОЛИЧЕСТВЕННЫЕ И КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ГУМУСА ПОЧВ

В данной работе приводятся результаты исследования содержания и состава гумуса почв в хвойно-лиственных насаждениях разного смешения. Исследования проводились на четырех пробных площадях (п. п.), заложенных в Орликовском лесничестве Копыльского лесхоза. Краткая лесоводственно-таксационная характеристика насаждений на п. п. приводится в табл. 1.

Почва на всех п.п. дерново-подзолистая средне-оподзоленная, развивающаяся на легком песчанистом суглинке, подстилаемом песком рыхлым (п.п. 1 и 2) и песком связным (п.п. 4).

Исследуемые почвы характеризуются сильнокислой и кислой реакцией среды, значительной гидролитической кислотностью, сравнительно невысокими значениями обменных оснований и подвижных форм фосфора и калия (табл. 2). При определении гумуса [1] было установлено, что общее содержание углерода органического вещества почв на п.п. в значительной степени зависело от породного состава насаждений (табл. 3). Наименьшим оно было на п.п. 1-1,68% и наибольшим на п.п. 4-3,35%. В составе гумуса на всех п.п. преобладали вещества, легко извлекаемые смесью пирофосфата натрия и едкого натрия, т.е. соединения углерода, непрочно связанные с минеральной частью почвы. Содержание этих ве-