А.П.Матвейко, профессор

МАЛСОТХОДЯБІЕ И БЕЗОТХОДНЫЕ ТЕХНОЛОГИИ В ЛІЕСОЗАГОТОВИТЕЛЬНОЙ ПРОМЫШЛЕННОСТИ

The definitions of the conceptions of the small-wasteless wood-cutting technologies are given. The criterions for choosing the small-waste and wasteless wood-cutting technologies are presented. The structure and the criterions of effectivity of modern wood-cutting technological systems are considered.

В числе важнейших проблем, стоящих перед обществом, являются экономия сырьевых и энергетических ресурсов и охрана окружающей среды. И наш, и мировой опыт показывает, что успешному решению этих проблем во многом будет спосооствовать создание и внепрение в производство безотходных и малостжодных эконогический частых технологий и применение для их реализации экономичных и высокопроизводительных манили, удовлетворяющих экологическим требованиям. Однако до настоящего времени применительно к лесозаготовительной промышленности нет четких определений, какую технологию следует считать безотходной, а какую - малоотходной. Не определены и критерии, которыми необходьмо руководствоваться при разработке этих технологий. Пока не разработан в полном объеме и математический оппарат, позволяющий определять эффективность функционирования лесозаготовительных машин в данных конкретных природно-производственных условиях, реализующих технологический процесс.

В инфоком смысле безотходная и малоотходная технология - это система технологических процессов, предусматривающих комплексное использование природного сырья, промежуточных продуктов и отходов. Это понятие не-абсолютно, и его следует соотносить к конкретной стадии производственного пронесса несослотовок (лесосечным расотам, лесоскладским работам и т.д.) и виду продукции, полученой на этой стадии процесса. Следовательно, безотходная технология лесосечных работ - это система технологических процессов, обеспечавающих комплек и комплексию использование бизмассы растущего дерева (кладовилой и поленьюй части герева) путем заготовки продукции (промежуточки и родукции процесса (кластов, сортиментов, щены, превесной зелена и т.п.). Практически в ближайщей перспективе такая технология песосечных работ не резнизуема в свиу ряда объективных и субъективных факторов. На и нужна ни такая технология в лесу с экологической точки от снязе, так как се применение приведст к обед ваньно ночвы питательными венцестьмии, что отрицательно скажется на песовосстановлении.

Безоткодная технология на основных лесоскладских работах (работы по переработке доставленных деревьев или клыстов на продукцию в виде различных лесоматериалов) более реальна и целесообразна. И необходимо стремиться к стопроцентному использованию доставленного древесного сырья на выпуск продукции, свойственной данной стадии процесса.

Таким образом, на современном этапе развития лесозаготовительной отрасли промышленности целесообразна разработка и внедрение малоотходных технологических процессов лесозаготовок.

Малоотходная технология лесозаготовок - это система технологических процессов, позволяющих вовлекать в сферу производства не только ликвидную древесину, но и значительную часть неликвидной и обеспечивающих использование надземной биомассы дерева на 80% и более.

В настоящее время имеются необходимые предпосынки для внедрения на рубках главного и промежуточного пользования малоотходных технологических процессов лесозаготовок, обеспечивающих вовлечение в сферу производства не только стволовой древесины, но и большую часть сучьев и вершин.

Для правильного выбора малоотходной технологии лесозаготовок для данных конкретных природно-производственных условий необходимы объективные критерии и системный подход. Такими критериями являются размерные (длина и диаметр деревьев, протяженность кроны) и качественные (деловые, дровяные деревья) показатели лесонасаждений, поступающих в рубку, породный состав и почвенно-грунтовые условия. По размерно-качественным показателям и породе представляется возможным определить виды продукции лесозаготовок, которые можно получить из данного древесного сырья, а, следовательно, и технологию получения этой продукции, и типы машин для реализации данной технологии. При этом необходимо иметь в виду, что согласно действующим ГОСТ, из древесины диаметром менее 6 см круглые деловые сортименты не могут быть получены.

Почвенно-грунтовые условия позволяют оценять насколько выбранная технология и типы машин им соответствуют и при необходимости внести коррективы.

Применение системного подхода позволяет проанализировать все параметры, определяющие функционирование технологического процесса как сложной системы. На то, что технологический процесс лесозаготовок является сложной системой, указывают следующие признаки:

- напичие в нем значительного количества взаимосвязанных между собой подсистем;
- многомерность процесса, обусловленная наличием значительного числа связей между подсистемами;
- многокритериальность процесса, обусловленная разнообразием целей отдельных подсистем;

- многообразие структуры процесса, обусловленное разнообразием структур подсистем.

Действительно, процесс заготовки лесопродукции (сортиментов, щепы и др.) можно рассматривать как совокупность трех основных подсистем, взаимосвязанных и взаимодействующих друг с другом: предмета труда и продукта труда (объект переработки), заготовительных и обрабатывающих операций (технологического процесса заготовки лесопродукции), набора машин и механизмов для выполнения заготовительных и обрабатывающих операций (комплекс лесозаготовительного оборудования). Тогда структурная схема лесозаготовительной технологической системы будет иметь следующий вид (рис.1).

Лесозаготовительная технологическая система (ЛТС)

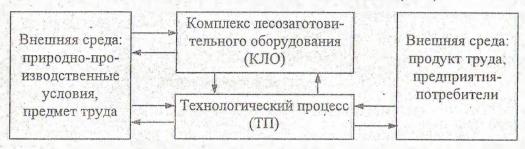


Рис. 1. Структурная схема лесозаготовительной технологической системы.

Разработанная малоотходная технология лесозаготовок подлежит проверке, насколько она эффективна с экономической точки зрения. Наиболее обоснованным и объективным критерием эффективности будут минимальные затраты на получение продукции заданного наименования и качества, которые выражаются неравенством

$$C > C_3 + C_{TD}$$

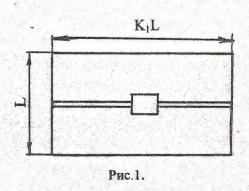
где C - предельная стоимость 1 m^3 продукции заданного наименования и качества; C_3 - приведенные затраты на заготовку 1 m^3 продукции заданного наименования и качества; C_{tp} - приведенные затраты на транспортировку 1 m^3 продукции потребителю.

Принятый критерий эффективности позволяет учесть общественно необходимые затраты на производство продукции по тому или иному технологическому процессу с применением тех или иных машин и механизмов.

Очевидно, что на величину приведенных затрат на заготовку 1 м³ продукции будет оказывать существенное влияние производительность применяемых песозаготовительных машин и механизмов в данных конкретных природнопроизводственных условиях. Для достижения наивысшей производительности

лесозаготовительной машины или минимального расхода энергии в данных конкретных природно-производственных условиях необходимо иметь сравнительно простые и удобные для практического использования формулы производительности и расхода мощности. Эти формулы с достаточной полнотой и достоверностью должны описывать выполняемый машиной или механизмом процесс и позволять анализировать эффективность их работы в зависимости от технологических параметров машины (механизма) и различных природно-производственных условий.

На основе данной концепции разработан и прошел производственную проверку ряд малоотходных технологических процессов рубок главного и промежуточного пользования и получены формулы, позволяющие всесторонне проанализировать производительность валочных, валочно-пакетирующих и валочно-трелевочных машин и расход мощности на спиливание деревьев.


УДК 630*221

И.В.Турлай, доцент

ОПТИМИЗАЦИЯ РАЗМЕРОВ ЛЕСОСЕК

The fotulas for defining optimal sizes of forest clearings with different means of wood transportation have been given.

Установление оптимальных размеров лесосек в зависимости от комплекса влияющих факторов: запаса древесины, расположения лесовозных усов, погрузочных площадок и волоков, стоимостей на строительство усов и волоков, а также затрат на трелевку является важным условием эффективности технологического процесса лесосечных работ.

Установим оптимальные размеры лесосек при трелевке древесины различными трелевочными тракторами (рис.1).

Суммарная стоимость трелевки 1 м³ древесины на погрузочный пункт составит

$$L = L L_1 + L L_2 + L L_3 + L L_4$$

где \mathbb{I}_1 - стоимость строительства уса отнесенная к 1 м³ древесины; \mathbb{I}_2 - стоимость трелевки 1 м³ древесины с лесосеки на по-

грузочный пункт; L_3 - стоимость устройства магистральных волоков на 1 м³ стрелеванной древесины; L_4 - стоимость устройства погрузочного пункта на 1 м³ древесины;