В.С.РОМАНОВ, проф., О.В.МОРОЗОВ (БТИ им. С.М.Кирова)

ЭКОЛОГИЧЕСКИЕ И ФИТОЦЕНОТИЧЕСКИЕ АСПЕКТЫ ФОРМИРОВАНИЯ ЧЕРНИЧНЫХ И БРУСНИЧНЫХ АССОЦИАЦИЙ

Черника и брусника широко распространены в лесной зоне. На относительно небольших участках, экологические условия которых отвечают их биологическим особенностям, эти виды формируют травяно-кустарничковый ярус леса. Для каждого вида характерна определенная экологическая амплитуда. В условиях БССР экологические амплитуды черники и брусники соответствуют условиям зеленомошной серии типов леса. В фитоценозе в зависимости от почвенно-гидрологических условий эти виды являются доминантами и в определенной мере индикаторами.

Доминирование в растительном сообществе любого вида определяется не только соответствием экологических условий его биологическим потребностям, но и взаимоотношениями этого вида с другими, совместно с ним произрастающими, или, согласно Сукачеву: "Оценка биогеоценотического значения любого вида или группы сходных видов растений в лесном биоценозе должна включать в себя решение вопросов об их экологическом и биоценотиче-

ском оптимумах произрастания" [1].

Исследования проводились в 1982 г. на 50 пробных площадях (п.п.), заложенных в сосняках разных классов возраста, условий рельефа и увлажнения. Уровень грунтовых вод (УГВ) в конце августа — в начале сентября в нижних частях склонов был на глубине 0,2 — 0,8 м, средних и верхних — глубже 2 м. Исследовательская работа велась на 10 учетных площадках каждой п.п. размером 1 м². В качестве таксономической единицы была принята ассоциация. В соответствии с расположением п.п. по рельефу (верх, середина и низ склона) выделено три ассоциации: бруснично-мшистая, бруснично-черничная и черничная. В пределах типа леса в зависимости от возраста, состава, полноты древостоя и других факторов меняются экологические условия, что выражается в различии ассоциаций [2]. Так, по исследованиям, проведенным в Литовской ССР, площадь сплошных зарослей дикорастущих ягодников в 1972 г. составляла лишь 2,8% от общей площади лесов [3].

Наши исследования, проведенные в Негорельском лесхозе, показали, что черника и брусника играют значительную роль в сложении травяно-кустарничкового яруса (табл. 1). С увеличением увлажнения фитомасса черники возрастает. В средней и нижней частях склонов она доминирует. Брусника здесь выступает в роли субдоминанта — фитомасса ее больше фитомассы всех других видов. С увеличением сухости почв в верхних частях склонов чаще встречается брусника, однако она здесь не доминирует.

Таблица 1 Надземная фитомасса травяно-кустарничкового яруса

(кг/га абс. сухого вещества)

Семейства		Ассоциация						
		бруснично-мшистая, кг/га/%	бруснично-чер- ничная. кг/га/%	черничная, кг/га/%				
	черника	21.70/2.15	829.0/52.22	1189.0/74.6				
Брусничные	брусника	298.30/29.50	188.0/11.85	113.0/7.09				
	голубика			28.7/1.80				
	всего	320,0/31,65	1017,0/64,07	1330,70/83,4				
Злаковые		281,83/27,88	48,70/3,07	106,30/6,67				
Вересковые		342,26/33,84	470,20/29,60	60 62,95/3,95				
Сложноцветн	ьіе	17,24/1,71	5,50/0,35	12,98/0,81				
Грушанковые		1,83/0,19	2,91/0,19	0,25/0,01				
Фиалковые		0,34/0,04	0,17/0,01	0,37/0,02				
Осоковые		2,78/0,28	8/0,28					
Зонтичные		0,37/0,04	4 0,14/0,01					
Норичниковые		2,45/0,25	0,16/0,01	2,06/0,13				
Губоцветные		0,97/0,1		0,18/0,01				
Ворсянковые		0,54/0,06		_				
Лютиковые		0,60/0,06	0,21/0,01	2,06/0,02				
Лилейные		1,49/0,15	1,23/0,08	0,18/0,11				
Гераниевые		0,99/0,09	_	_				
Розоцветные		0,23/0,02	0,12/0,01	5,11/0,32				
Плауновые		33,18/3,25	16,10/1,02	42,80/2,69				
Ситниковые		2,05/0,20	10,60/0,67	20,0/1,26				
Многоножковые		-	11,53/0,72	5,98/0,38				
Орхидные		0,20/0,01	2,72/0,18	1,13/0,07				
Бобовые		1,83/0,18	18 —					
Первоцветные		<u>-</u>	_	0,18/0,01				
Bcero:		1011,18/100	1587,29/100	1594,01/100				

Полученные по Россонскому и Негорельскому лесхозам (табл. 2) показатели проективного покрытия, густоты зарослей, количества кустов черники и фитомассы также свидетельствуют о неодинаковой фитоценотической значимости черники и брусники в различных условиях увлажнения.

Исследование соотношения фитомассы листьев и общей надземной части растений (табл. 2) показало, что процент фитомассы листьев как черники, так и брусники с увеличением увлажнения

Структура надземной фитомассы и урожайность черники и брусники

Ассоциация	Вид рас- тения	Про- ектив- ное по- кры- тие, %	Количество побегов, тыс.	Количество кустов черники, тыс. шт/га	Абсолют- но сухая надземная фитомас- са, кг/га	Процент листьев в фитомассе	Урожай ягод, кг/га
Бруснично- мшистая	Черни- ка	2	4,20	3,65	46	39,1	2
	Брусни- ка	30	33,20		354	67,2	30
Бруснично- черничная	Черника	28	25,74	20,90	622	27,3	136
	Брусника	19	21,28	_	329	62,3	7
Черничная	Черника	48	29,20	26,15	1325	17,9	280
	Брусника	6	10,54		179	61,4	4

уменьшается, что говорит об одинаковой реакции их на изменение условий увлажнения.

Увеличение увлажнения положительно влияет на рост изучаемых видов. Подтверждением тому могут служить полученные нами биометрические показатели черники и брусники (табл. 3).

Все биометрические показатели и брусники, и черники с увеличением увлажнения возрастают.

Таким образом, экологический оптимум произрастания (или во всяком случае приближение к нему) этих видов находится в условиях с высоким уровнем увлажнения. В природе — это нижние части склонов, площади суходолов, граничащие с болотами, или тяжелые суглинистые почвы. Однако фитоценотическая устойчивость по отношению друг к другу совместно произрастающих черники и брусники в этих условиях различна. Приоритет здесь принадлежит чернике. Для растений черники характерны высокие биометрические показатели, а для всей популяции высокая встречаемость, обилие и численность.

На границе экологической амплитуды в условиях более сухих почв и при наличии конкуренции со стороны вереска и злаковых (табл. 1) популяция брусники не образует сколько-нибудь значительных дискретных зарослей.

Наряду с показателями роста и развития черники и брусники исследовалась их урожайность (табл. 2).

Вследствие неблагоприятных климатических условий в период закладки генеративных почек летом 1981 г. и в период цветения весной 1982 г. урожай брусники был незначителен и не представлял интереса для промышленной заготовки. Урожайность черники по годам более стабильна. Урожай 1982 г. является средним в условиях БССР.

Рост черники и брусники

Ассоциация	Вид рас- тения	Макси- мальная Н, см	Сред- няя Н, см	Годичный линейный прирост,см	Средняя масса од- ного по- бега "г
Бруснично-мшистая	Черника	19,3	11,5	4,5	0,27
	Брусника	15,1	8,2	4,5	0,24
Бруснично-чернич- ная	Черника Брусника	27,4 17,5	$\substack{16,2\\10,4}$	5,3 5,3	0,50 0,33
Черничная	Черника	39,5	24,0	5,9	1,01
	Брусника	21.8	12,5	5,8	0.36

Таблица 4
Матрица коэффициентов корреляции показателей роста
и продуктивности черники и брусники

Вид растения		x ₁	\mathbf{x}_2	X ₃	X ₄	X ₅	x ₆	x ₇	X ₈
X ₁	Черника	-	0,94	0,77	0,63	0,76	0,71	0,28	0,87
	Брусника	_	0,89	-	0,88	0,66	-0,13	0,12	0,44
X_2	Черника	0,94	_	0,84	0,78	0,70	0,69	0,29	0,85
	Брусника	0,89	_	_	0,90	-0,52	-0,18	-0,13	0,57
X_3	Черника	0,77	0,84	_	0,79	0,63	0,53	0,28	0,66
Ü	Брусника		_	_	_		_	_	_
X_4	Черника	0,63	0,78	0,79	_	0,39	0,36	0,27	0,57
	Брусника	0,88	0,90	-	_	0,44	-0,23	-0,90	0,40
X ₅	Черника	0,76	0,70	0,63	0,39	_	0,90	0,26	0,55
Ü	Брусника	0,66	-0,52		0,44		-0,28	0,33	0,62
x ₆	Черника	0,71	0,69	0,53	0,36	0,90	-	0,27	0,53
	Брусника	-0,13	-0,18	_	-0,23	-0,28	-	0,15	0,43
x ₇	Черника Брусника	0,28 0,12	0,23 -0,13	0,28	0,27 -0,90	0,26 0,33	0,27 0,15	_	0,16 0,48
X ₈	Черника	0,87	0,85	0,66	0,57	0,55	0,53	0,16	_
	Брусника	0,44	0,57	_	0,40	0,62	0,43	0,48	

П р и м е ч а н и я: X_1 — фитомасса, кг/га; X_2 — проективное покрытие, %; X_3 — количество кустов, тыс. шт.; X_4 — количество побегов, тыс. шт.; X_5 — максимальная H, см; X_6 — средняя H, см; X_7 — годичный линейный прирост, см; X_8 — урожай ягод, кг/га.

Полученные данные (табл. 1 — табл. 3) позволили провести корреляционный анализ (табл. 4).

Как видим из табл. 4, наблюдается достоверная прямая связь показателей фитомассы черники и брусники с проективным по-

крытием, количеством парциальных кустов (черника), количеством побегов, максимальной высотой, а также прямая связь у черники между фитомассой и средней высотой, фитомассой и урожаем ягод. Урожай ягод черники достоверно коррелирует также с проективным покрытием и количеством парциальных кустов. Слабая связь урожая брусники с фитомассой и со всеми другими показателями объясняется ее биологической особенностью продуцировать при малом обилии, а также сильным влиянием на ее урожайность погодных условий. Недостаточно высокая обратная зависимость отмечена у брусники между фитомассой и средней высотой. Причина здесь в том, что на сухих песчаных почвах для брусники характерен небольшой прирост в высоту, а накопление фитомассы происходит в основном за счет успешности горизонтального распространения. В условиях же повышенного увлажнения, несмотря на высокие показатели роста, вследствие меньшей фитоценотической устойчивости брусники фитомасса ее незначительна. У многолетних кустарничков черники и брусники в течение десятков лет накапливается фитомасса и формируется структура яруса. Поэтому вполне закономерно отсутствие достоверной связи между годичным линейным приростом и фитомассой, проективным покрытием. Ветвление побегов черники - симподиальное, поэтому с возрастанием высоты увеличивается ее проективное покрытие. В этом причина закономерной коррелятивной зависимости между высотой и проективным покрытием черники. Аналогичный коэффициент у брусники невелик и отрицателен, так как ветвление побегов у нее моноподиальное. Положительный высокий коэффициент корреляции у черники и отрицательный — у брусники отмечен между годичным линейным приростом и количеством побегов. Эта, а также слабые зависимости между высотой и количеством побегов, количеством кустов (черника) и годичным линейным приростом объясняются биологической неспособностью растений образовывать много побегов и кустов с высоким показателем роста. Довольно высокий коэффициент корреляции у черники между количеством кустов и высотой. Следовало ожидать более сильной связи между высотой и годичным линейным приростом, но так как мы определяли прирост не только у верхушечных побегов, но и у боковых, а также у растущих из основания каудекса, такая связь не установлена. Вполне объяснимы и не представляют особого интереса зависимости между количеством побегов и количеством кустов (черника), проективным покрытием; количеством кустов и проективным покрытием; максимальной и средней высотой.

Проведенные исследования позволили сделать следующие выволы.

Оба вида — черника и брусника — положительно реагируют на увеличение увлажнения. Их биометрические показатели при этом возрастают.

Экологические зоны, занимаемые черникой и брусникой, в значительной мере перекрывают друг друга. На всем протяжении

склонов эти виды произрастают совместно. Однако соотношение запасов надземной фитомассы популяций этих видов в различных условиях увлажнения разное. Изменение соотношения фитомасс черники и брусники происходит вследствие изменения условий увлажнения. С увеличением увлажнения фитоценотическая устойчивость черники возрастает, брусники — снижается.

В микропонижениях на повышенных местах и на срединах склонов, песчаных и супесчаных почв, на суглинистых почвах, т. е. там, где уровень увлажнения средний, между влажным и свежим, формируются бруснично-черничные ассоциации.

ЛИТЕРАТУРА

1. Сукачев В.Н. Основы песной биогеоценологии. — М., 1964, с. 173. 2. Гельтман В.С. Географический и типологический анализ лесной растительности Белоруссии. — Минск, 1979, с. 136. 3. Распространение важнейших дикорастущих ягодных растений в Литовской ССР и изменение их площадей с 1962 по 1973 г. / В.Ф.Буткус, Д.К.Будрюнене, В.А.Бальчюнене, З.Ю.Бандзайтене. — Тр. АН Литовской ССР. Вильнюс, 1976. Сер. В,т. 2 (74), с. 15 — 24.

УДК 630* 114

И.К.БЛИНЦОВ, П.Ф.АСЮТИН, канд-ты с.-х. наук (БТИ им. С.М.Кирова)

О ВАЛОВОМ ХИМИЧЕСКОМ СОСТАВЕ ДЕРНОВО-ПАЛЕВО-ПОДЗОЛИСТЫХ ПОЧВ ПОД ХВОЙНЫМИ НАСАЖДЕНИЯМИ РАЗНЫХ ТИПОВ ЛЕСОВ

Ежегодно лесное хозяйство Белоруссии получает от сельского хозяйства значительные площади малопригодных почв под облесение. В то же время некоторые почвы, занятые в лесном хозяйстве под малоценными осиновыми и сероольховыми насаждениями, обладая высоким потенциальным плодородием, могут использоваться в сельском хозяйстве для расширения посевных площадей. Однако к этому вопросу необходимо подходить весьма осторожно, исходя из глубокого учета и изучения свойств почв и их плодородия. Почвы обеспечивают растения не только питательными элементами, необходимыми для их жизнедеятельности, но и влагой, воздухом и теплом. Для сельскохозяйственных целей пригодны не всякие лесные почвы, а только потенциально богатые.

Почва — это сложная биокосная система, состоящая из твердой, жидкой и газообразной фаз. Твердая фаза занимает 50-60% объема почвы, в нее входят минеральные и органические вещества. Минеральная часть наследуется в основном от почвообразующей материнской породы, и основная ее масса состоит из макроэлементов