Табл. Детоксикация сточных вод в биореакторах различных типов

Биореактор	с неподвиж кой	ной загруз-	Комбинированный биореактор						
время пре- бывания, ч	ХПК БОВ, мг О ₂ /л	съем XПК,	время пре- бывания, ч	ХПК БОВ, мг О ₂ /л	съем XIIK,				
200	1200	75	102	1140	77,2				
50	1400	71	30,1	1530	69,4				
25	1600	67	20,5	1590	67,3				
12,5	2200	54	7,9	1670	66,5				

Т.о., комбинированный биореактор, базирующийся на основе UASBреактора, может быть использован как аппарат интенсивного массообмена для анаэробной детоксикации сточных вод гидролизного производства.

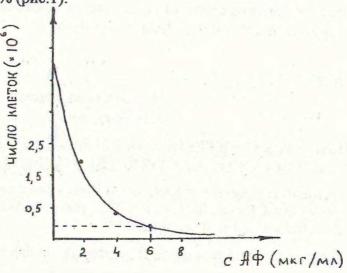
ЛИТЕРАТУРА

- 1. Калюжный С.В., Данилович Д.А., Ножевникова А.Н. Анаэробная, биологическая очистка сточных вод // Итоги науки и техники. Сер. биотехнол. ВИНИТИ. 1991. № 29. С. 5-156.
- 2. Высокоэффективные аппараты и сооружения биологической очистки // ВСТ:Водоснабжение и санитарная техника. - 1994. - №7. - С.27-31.
- 3. Гребенчикова И.А., Ручай Н.С., Маркевич Р.М. Исследование процесса анаэробной детоксикации сточных вод в проточном режиме // Сборник трудов БГТУ. - 1997. - Вып. 5. - С. 44-47.

УДК 573.6.086.83;577.21

Н.А.Белясова, доцент; Н.В.Гриц, доцент

ВЫЯВЛЕНИЕ И ХАРАКТЕРИСТИКА ПЛАЗМИД В КЛЕТКАХ LACTOCOCCUS LACTIS SUBSP. CREMORIS


The plasmids composition of Lactococcus lactis subsp.cremoris 9-1 cells was investigated. By two methods a 36 MDa plasmid was revealed, which contain lactose methabolism genes.

Молочнокислые бактерии рода Lactococcus являются основными компонентами заквасок для приготовления разнообразных молочнокислых продуктов. Поэтому свойства и производственные характеристики этих бактерий напрямую сказываются как на качестве самих продуктов, так и на эффективности процессов их приготовления. В заводских лабораториях и отраслевых институтах осуществляется постоянный поиск и выделение

новых, более перспективных штаммов лактококков. В то же время существует другой способ их получения, основанный на генетическом реконструировании уже имеющихся (использующихся в производстве) бактерий.

В основе такой работы лежит использование методов обмена генетической информацией между клетками микроорганизмов. При этом известно, что легче всего бактерии обмениваются внехромосомными факторами наследственности, к которым, в первую очередь, относятся плазмиды. В различных исследованиях показано, что многие важные свойства молочнокислых бактерий детерминируются плазмидами: утилизация лактозы [1], сахарозы, ксилозы, маннозы, галактозы [2], протеиназная активность, устойчивость к низину и бактериофагам, метаболизм цитрата, устойчивость к неорганическим ионам и антибиотикам [3] и другие признаки. Каждый штамм бактерий характеризуется собственным набором плазмид разной молекулярной массы и с разнообразными детерминантами. В задачу настоящего исследования входило выявление плазмид у производственного штамма L.lactis subsp. cremoris 9-1 и характеристика их свойств.

Среди разных способов выявления плазмид в бактериях наиболее доступным является элиминация плазмид из клеток с последующим анализом утраченных элиминантами признаков. Для этого используются агенты, нарушающие репликацию плазмиды при клеточном делении. В качестве такого агента использовали акрифлавин в концентрации 6 мкг/мл с длительностью обработки 36 час. Выживаемость клеток в указанных условиях составляла 5% (рис.1).

Puc.1. Выживаемость бактерий L.lactis subsp.cremoris 9-1 при обработке акрифлавином

Обработанные акрифлавином клетки высевали на серию дифференциально-диагностических сред с различными углеводами для выявления способности сбраживать эти вещества, на среды с антибиотиками и без таковых для поиска чувствительных к ним вариантов и на агаризованное молоко для выявления клонов, утративших способность к синтезу протеолитических ферментов. Результаты этих экспериментов представлены в табл.1.

Табл.1. Характеристика обработанных акрифлавином бактерий L.lactis subsp. cremoris 9-1

4 CHOINI												
Число клонов	780	12	960	0	810	0	926	0	713	0	828	3

Примечание: Lac⁺/Lac⁻ - способность/неспособность утилизировать лактозу; Km^r/Km^s - устойчивость/чувствительность к канамицину (20 мкг/мл); Sm^r/Sm^s - устойчивость/чувствительность к стрептомицину (25 мкг/мл); Rif^r/Rif^s - устойчивость/чувствительность к рифампицину (15 мкг/мл); Nal^r/ Nal^s - устойчивость/чувствительность к налидиксовой кислоте (10 мкг/мл); Prt⁺/Prt⁻ - способность/неспособность продуцировать протеолитические ферменты.

Как следует из представленных данных, исследование большого количества клонов, обработанных акрифлавином, позволило выявить варианты, утратившие способность сбраживать лактозу (частота элиминации 1,5%) и продукцию протеолитических ферментов (частота элиминации 0,4%). Эффективность этих событий достаточно высока, чтобы можно было объяснять их не мутационными изменениями в соответствующих генах, а элиминацией плазмид, содержащих указанные детерминанты.

Чтобы подтвердить высказанное предположение, воспользовались другим методом выявления плазмид в клетках бактерий - электрофорезом ДНК в агарозном геле [4]. На рис.2 представлена электрофореграмма, характеризующая плазмидные профили клеток исходного типа L.lactis subsp. стетогія 9-1 и вариантов этого штамма, утративших признаки Lac⁺ и Prt⁺.

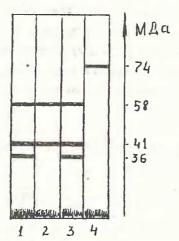


Рис.2. Электрофореграмма плазмидных ДНК бактерий: 1 - L.lactis subsp.cremoris 9-1 (исходный тип); 2 - L.lactis subsp.cremoris 9-1 Lac⁻; 3 - L.lactis subsp.cremoris 9-1 Prt⁻; 4 - E.coli W1655 F'lac.

Из представленных на рис.2 результатов следует, что клетки исходного штамма L.lactis subsp. cremoris 9-1 содержат 3 плазмиды с молекулярной массой 58, 41 и 36 МДа (трек 1). Варианты этого штамма, угратившие способность сбраживать лактозу (трек 2), содержат только две плазмиды с массой 58 и 41 МДа, то есть можно связать потерю способности к сбраживанию лактозы с утратой клетками плазмиды массой 36 МДа и сделать вывод о присутствии на этой плазмиде генов, ответственных за утилизацию лактозы. В то же время элиминанты исследуемого штамма, лишенные способности к продукции протеолитических ферментов (трек 3), по-прежнему сохраняют 3 плазмиды, характерные для штамма исходного типа. Данное обстоятельство может быть следствием того,

что плазмида, детерминирующая Prt⁺ признак, не выявлена методом электрофореза либо указанное свойство опосредуется хромосомальными генами и популяция исследуемых бактерий гетерогенна по этому признаку. Плазмидные ДНК массой 58 и 41 МДа могут быть криптическими (не содержащими генов, ответственных за фенотипически различимые признаки) либо опосредовать свойства, которые не удалось выявить в представленном эксперименте.

ЛИТЕРАТУРА

- 1. Sanders M., Klaenhammer T. Evidens for plasmid linkage of restriction and modification in Streptococcus cremoris KH // Appl.Environ.Microbiol. -1981.-V.42.-№4.-P.944-950.
- Barefoot S., Klaenhammer T. Detection and activity of lactacin B, bacteriocin produced by Lactobacillus acidophilus // Appl.Environ.Microbiol.-1983.-V.45.-P.1808-1815.
- 3. Kondo J., McKay L. Gene transfer systems and molecular cloning in group N streptococci: a review // J.of Dairy Science.-1985,-V.68.-№9.-P.2143-2159.
- 4. Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria // Plasmid. 1978. V.1. P.584-588.