Нельзя исключить также, что наряду с описанными событиями вклад в снижение трансформирующей активности озонированной ДНК вносит и ее фрагментация до молекул малого размера, не способных адсорбироваться на поверхности клеточной стенки и поглощаться клеткой.

ЛИТЕРАТУРА

- 1. Гриц Н.В., Фомичев А.Ю. // Воздействие озона на клетки грамотрицательных и грамположительных бактерий при разных условиях обработки // Труды БГТУ. Серия 3. Химия и химическая технология.-1998.
 -Вып. 6.
- 2. Coslow S., Oishi M. Genetic transformation in Escherichia coli K-12 // Proc. Nat. Acad. Sci, USA. -1973. -V. 70. N1. -P. 84-87.
- 3. Дебабов В.Г., Лившиц В.А. Современные методы создания промышленных штаммов микроорганизмов. М.: Высшая школа, -1988.
- 4. Бреслер С.Е. Молекулярная биология. Л.: Наука, -1973.

УДК 537.37

Н.В. Гриц, доцент; А.Ю. Фомичев, научн.сотр.; В.Н. Леонтьев, доцент

ДЕСТРУКЦИЯ ПРЕДШЕСТВЕННИКОВ ДНК ПРИ ОЗОНИРОВАНИИ В ВОДНЫХ РАСТВОРАХ

On the base of obtained data the conclusion was made, that ozone resistans of nitrous bases, which was registrated on value optical dencity there solutions are increacing in the set: guanine - cytosine - uracil - adenine. Ozone-resistence of nitrous base derivates are increasing in the set: nucleo-sidmonophosphate - nucleosidthreephosphate - nucleotides - polynucleotides.

В предыдущей работе было показано, что одной из причин снижения трансформирующей активности ДНК после обработки озоном является деструкция азотистых оснований [1]. В данной работе стояла цель сравнить степень повреждаемости разных азотистых оснований при обработке О₃ в водных растворах, а также исследовать деструкцию оснований при их гликозидировании, фосфорилировании нуклеозидов и в составе полинуклеотидов по схеме азотистые основания - нуклеозиды-нуклеотиды (нуклеозидмонофосфаты и нуклеозидтрифосфаты) - полинуклеотиды. Следует отметить, что подобные исследования уже проводились в других лабораториях, но полученные результаты противоречивы и требуют уточнения [2,3].

Все препараты использовали в эквимолярных концентрациях (10⁻⁴ М). Озонолиз осуществляли в следующем режиме: концентрация О₃ - 0,5 мг/л воздуха; скорость продувки озонированного в коронном разряде воздуха - 0,1 л/мин; объем обрабатываемых водных растворов - 5 мл. О степени деструкции азотистых оснований и их производных судили по электронным спектрам поглощения, полученным на спектрофотометре SPECORD M-40 в диапазоне 50000 см⁻¹ - 33000 см⁻¹.

На рис.1 представлены спектры поглощения контрольного и обработанных озоном в течение 1-5 мин растворов урацила (структурный компонент РНК урацил был использован в работе вместо тимина, которым мы не располагали).

Выявленная для урацила закономерность спектральных характеристик растворов, подвергнутых озонолизу, имела место и в случае использования растворов аденина, гуанина и цитозина.

Для удобства сравнения степени деструкции озоном четырех оснований между собой оптические плотности обработанных растворов, полученные в области максимального поглощения, были нормированы по отношению к оптическим плотностям контрольных (необработанных) образцов. В результате получены кривые, позволяющие сравнивать основания по чувствительности к обработке озоном в одинаковых условиях озонолиза (рис.2).

Как видно, оптическая плотность растворов всех 4-х оснований снижается в линейной зависимости от дозы воздействия (для гуанина, имеющего 2 максимума поглощения, отдельно рассчитывали показатели для двух длин волн). На основании углов наклона кривых, отражающих снижение поглощения по мере увеличения дозы воздействия, можно заключить, что азотистые основания по-разному чувствительны к озону и их чувствительность возрастает в ряду аденин— урацил— цитозин— гуанин.

Ранее показано, что у разных производных азотистых оснований по мере усложнения химической организации (наличие остатка дезоксирибозы, фосфорилирования нуклеозидов) деструктивный процесс происходит неодинаковым образом [2]. В условиях наших экспериментов наибольшую чувствительность к озону проявляли нуклеозидмонофосфаты, несколько менее подвержены деструкции нуклеозидтрифосфаты и наиболее устойчивы полинуклеотиды (рис.3). Существенной разницы в деструкции оснований и нуклеозидов при озонолизе водных растворов не обнаружено.

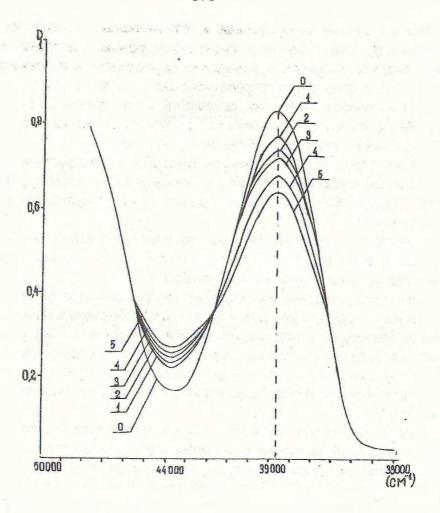


Рис. 1. Спектры поглощения контрольного и обработанных озоном растворов урацила:0 - контроль; 1 - озонирование 1 мин; 2 - озонирование 2 мин; 3 - озонирование 3 мин; 4 - озонирование 4 мин; 5 - озонирование 5 мин

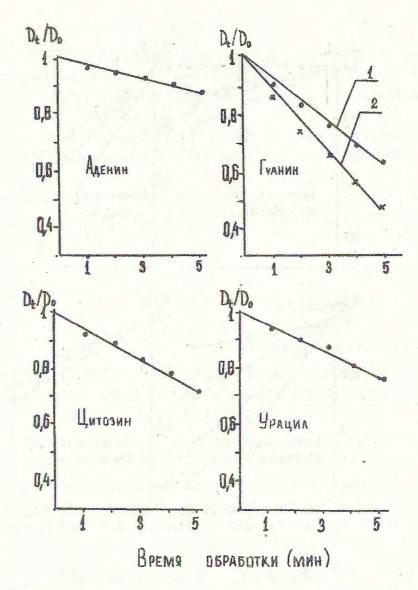


Рис. 2. Степень деструкции азотистых оснований в зависимости от дозы озона:1 - при 41 000 см⁻¹; 2-при 36 000 см⁻¹

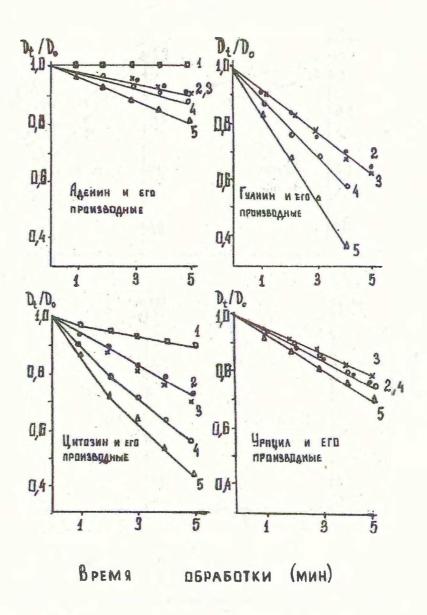


Рис. 3. Степень деструкции азотистых оснований и их производных в зависимости от дозы озона 1 - полинуклеотиды; 2 - основания; 3 - нуклеозиды; 4 - нуклеозидтрифосфаты; 5 - нуклеозидмонофосфаты

Таким образом, на основании представленных результатов можно сделать следующие выводы: 1) устойчивость азотистых оснований к озону, регистрируемая по величине оптической плотности их растворов, возрастает в ряду гуанин-цитозин-урацил-аденин; 2) устойчивость производных азотистых оснований возрастает в ряду нуклеозидмонофосфатынуклеозидтрифосфаты-нуклеозиды и основания-полинуклеотиды.

ЛИТЕТАТУРА

- 1. Гриц Н.В., Ющенко В.К., Фомичев А.Ю. Генетическая трансформация бактерий Е.coli К-12 дезоксирибонуклеиновой кислотой, обработанной озоном in vitro // Труды БГТУ. Серия 3. Химия и химическая технология.-1998.- Вып. 6.
- Shinriki N. et al. Degradation of yeast RNA, yeast phenylalanin tRNA and tobacco mosaic virus RNA // Biochem. Biophyss. Acta. -1981.-V. 655.-P. 323-328.
- 3. Герасимова Л.К. и др. Действие озона на нуклеиновые кислоты //Вестник Белорусского ун-та. Серия 2. Химия. Биология. География. 1984. -№ 1. С. 32-35.

УДК 537.37

Н.В. Гриц, доцент;Г.В. Машковская;А.Ю. Фомичев, научн.сотр.

ЧУВСТВИТЕЛЬНОСТЬ К ДЕЙСТВИЮ ОЗОНА МУТАНТОВ С РАЗНЫМИ ДЕФЕКТАМИ ГЕНОВ, ОТВЕТСТВЕННЫХ ЗА РЕПАРАЦИЮ ДНК

The role uvrA⁺, lexA⁺, recA⁺ genes in process of reparation ozone-indused demiges of bacterial and phage DNA was investigated.

Работы в плане изучения летального и других эффектов озона, выявления наиболее чувствительных к нему клеточных структур, а также идентификации ферментных систем и систем генетического контроля, детерминирующих чувствительность микроорганизмов к озону и восстановление индуцированных повреждений, ведутся в ряде лабораторий [1-3], однако накопленные данные часто противоречивы. Основываясь на экспериментально установленном факте разной чувствительности к озону отдельных бактериальных мутантов, дефектных по синтезу, участвующих в репарации повреждений ДНК ферментов [4, 5], мы попытались выяснить роль отдельных генов, вовлеченных в репарацию УФ- и у-повреждений ДНК, в восстановлении жизнеспособности обработанных озоном бактерий.

В качестве объектов исследования были выбраны изогенные, т.е. практически «одинаковые» штаммы бактерий, различающиеся лишь наличием одной мутации, сообщающей клетке дефектность в осуществлении какого-либо из этапов репарации ДНК. В их числе были штаммы E.coli K-12: AB1157 (не содержит мутаций в генах, ответственных за восстановление ДНК); AB1886 uvrA6 (дефектен по эксцизии пиримидиновых димеров и в силу этого повышенно чувствителен к УФ-свету); AB2494 lexA1 (по-