УДК 666.613:666.738 ВЛИЯНИЕ РАЗЛИЧНЫХ ФЛЮСУЮЩИХ ДОБАВОК НА ПРОЦЕССЫ НИЗКОТЕМПЕРАТУРНОГО ОБЖИГА ПЛОТНОСПЕКШИХСЯ КЕРАМИЧЕСКИХ МАСС

Ю.А.КЛИМОШ, И.А.ЛЕВИЦКИЙ Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Плотноспекшиеся керамические массы находят все более широкое применение при изготовлении чайной и кофейной посуды, ваз, штофов для разлива алкогольных напитков и других изделий бытового назначения.

Высокая степень спекания и влагонепроницаемость изделий (водопоглощение менее 5 %) достигается введением оптимального количества флюсующих добавок, увеличивающих общее количество расплава и снижающих его вязкость.

В данной работе приводятся результаты исследований флюсующего действия таких компонентов как нефелин-сиенит, стеклофритт (специально синтезированное бороалюмосиликатное стекло), стеклобой (тарных стекол, листового стекла, кинескопов), грубые отходы стекловолокна. Исследовались также глауконитсодержащая порода, амфиболовый концентрат и "хвосты" от обогащения железистых кварцитов, а также их комбинации с указанными выше плавнями на процессы низкотемпературного обжига керамических масс. Содержание и соотношение указанных компонентов варьировалось и по экономическим соображениям: составляло не более 30 % (здесь и далее по тексту приведено массовое содержание).

В качестве глинистого сырья использовались местные легкоплавкие глины месторождений "Гайдуковка" (Минская область) и "Лукомль" (Витебская область). Применялась также добавка 10 % огнеупорной глины Латненского месторождения (Россия), вводимая с целью расширения интервала спекания изделий и интенсификации процессов фазообразования.

Приготовление литьевых масс осуществлялось по традиционной шликерной технологии. Влажность шликера составляла 42–45 %. Обжиг изделий, изготовленных методом шликерного литья в гипсовые формы, проводился в интервале температур 950–1050 °C с выдержкой при максимальной температуре 1ч.

В результате экспериментальных исследований установлено, что наибольшая степень спекания и соответственно более высокие показатели физико-химических свойств достигаются при использовании комбинации плавней. Рациональное сочетание различных плавней позволяет за счет изменения соотношения оксидов щелочных и щелочноземельных металлов регулировать количество и реакционную способность расплава и тем самым интенсифицировать процессы спекания. Показатели свойств и степень спекания образцов в значительной степени определяются оптимальным соотношением компонентов комбинированного плавня и температурой обжига.

Проведенные исследования позволили установить, что нефелинсиенит, глауконитсодержащая порода, амфиболовый концентрат и "хвосты" от обогащения железистых кварцитов в сочетании со стеклофриттой и стеклобоем при обжиге до 1000 °С не проявляют флюсующего действия и являются отощителем. Интенсивное флюсующее действие данных ком-

понентов начинает проявляться в интервале 1000-1050 °C.

Массы, содержащие в качестве флюсующего компонента стеклобой различных видов в количестве более 20 %, характеризуются узким интервалом обжига (30–50 °C), что несколько затрудняет получение качественных образцов изделий. Использование всех видов изученного стеклобоя более эффективно в сочетании с нефелин-сиенитом, так как последний начинает оказывать флюсующее действие в интервале температур 1000–1050 °C и способствует расширению интервала спекания образцов.

Наиболее высокая степень спекания и, соответственно, показатели физико-химических свойств достигались при использовании в качестве комбинированного плавня нефелин-сиенита в сочетании со стеклофриттой. Так, водопоглощение образцов, обожженных в интервале температур $1000-1050\,^{\circ}$ С, находилось в пределах $0.7-5\,^{\circ}$ %, кажущаяся плотность $2280-2450\,$ кг/м³, открытая пористость $-1.4-9\,$ %. Активное флюсующее действие стеклофритты объясняется наличием $17.5-18.0\,$ % оксида бора, который содержится наряду с оксидами щелочных и щелочноземельных металлов. При плавлении стеклофриттов при низких температурах ($600-800\,^{\circ}$ С) образуется большое количество расплава, характеризующегося невысокой вязкостью $-4.6\cdot10^3\,$ Па·с.

Оптимальными по водопоглощению являются массы, характеризующиеся содержанием Al_2O_3 не менее 18 %, суммой оксидов $(R_2O+RO+Fe_2O_3)$ не менее 17 %, отношение Al_2O_3/SiO_2 при этом составляет 0.25-0.3.

Согласно данным рентгено-фазового анализа кристаллическая составляющая всех масс представлена анортитом, гематитом и α -кварцем.

В ходе проведенных исследований разработаны составы масс для получения плотноспектихся керамических материалов бытового назначения на основе местного глинистого сырья и различных комбинаций плавня.

Изделия имеют хороший внешний вид, терракотовый цвет и могут выпускаться как неглазурованными, так и декорированными глазурями различных типов.