1	2	3	4	5
Изолейцин	0,63 6,28	<u>0,16</u> 5,75	$\frac{0,66}{5,31}$	0,18 5,26
Лейцин	$\frac{1,07}{10,67}$	$\frac{0,26}{9,35}$	$\frac{1,20}{9,66}$	$\frac{0,31}{9,06}$
Тирозин	$\frac{0,38}{3,79}$	$\frac{0.07}{2.51}$	$\frac{0,39}{3,14}$	$\frac{0.09}{2.63}$
α-аланин	$\frac{0,65}{6,48}$	$\frac{0,16}{5,75}$	$\frac{0,75}{6,03}$	$\frac{0,19}{5,55}$

Следовательно, древесную зелень, несмотря на неудобства, связанные с необходимостью заготовки и хранения ее в предельно краткие сроки, вполне можно применять в качестве кормовых добавок благодаря значительному содержанию в ней ценных веществ, превосходящих по всем показателям таковые древесной зелени хвойных пород и не уступающих в этом отношении некоторым традиционным видам кормовых культур.

ЛИТЕРАТУРА

1. Пири Н.У. Белки из листьев зеленых растений. — М., 1980. 2. Рублев-ский С.А. Зеленые кладовые кормов // Сел. хоз-во Белоруссии. — 1983. — № 12. 3. Бело зерский А.Н., Проскуряков Н.И. Практическое руководство по биохимии растений. — М., 1951. 4. Куркаев В.Т. Ускоренное определение азота, фосфора и калия в растениях из одной навески // Почвоведение. — 1959. — № 9. 5. Журавлев Е.М. Руководство по зоотехническому анализу кормов. — М., 1963. 6. Лукашик Н.А., Тощилин В.А. Зоотехнический анализ кормов. — М., 1965. 7. Плешков Б.П. Практикум по биохимии растений. — М., 1976.

УДК 630*181.65

И.Э. РИХТЕР

МАССА И ХИМИЧЕСКИЙ СОСТАВ РАСТЕНИЙ-БИОМЕЛИОРАНТОВ

Продуктивность сосновых лесов, произрастающих на песчаных почвах, во многом зависит от уровня азотного питания. Поэтому с целью его улучшения применяются минеральные удобрения или растения, фиксирующие атмосферный азот и переводящие его в соединения, усваиваемые растениями и предотвращающие загрязнение почв нитратами или нитритами [1].

Для подбора и успешного использования естественно произрастающих в лесах перспективных растений-азотособирателей необходимо изучить их экологические особенности, биологическую продуктивность, химический состав и влияние на основные компоненты лесных фитоценозов.

В настоящее время лучше всего изучено влияние многолетнего люпина на компоненты лесных фитоценозов и разработаны практические рекомендации

по введению его в междурядия лесных культур. Экологические свойства и мелиорирующее влияние бобовых мелиорантов на лесные фитоценозы Белоруссии до сих пор не исследовались. Это объясняется тем, что доля их участия в естественных травостоях незначительна, в связи с чем при подготовке образдов для биохимических анализов их включают в группу прочих растений.

Нами изучались бобовые растения-биомелиоранты сосняков вересковых, брусничных и мшистых (A_1-B_2) — жарновец метельчатый, дрок красильный, лядвенец рогатый, клевер люпиновый, горошек лесной и мышиный, люпин

многолетний.

Жарновец метельчатый (Sarothamnus scoparius Wimm) — многолетний кустарник, достигающий в высоту 150 см. Стебель у него около основания сильно разветвленный с прямыми или поднимающимися ветвями. Корни деревянистые, также сильно разветвленные, проникают на глубину до 1 м. Цветет жарновец метельчатый в мае—июне, размножается преимущественно семенами (созревают в августе). Он декоративен, является хорошим медоносом. Встречается по всей республике.

Дрок красильный (Genista tinctoria L.) — многолетний кустарник, достигающий в высоту 150 см. Корневище у него крепкое, дает начало многочисленным прямостоячим прутьевидным стеблям. Корни проникают на глубину до 1 м. Цветет дрок в июне—июле. Семена созревают в августе—сентябре. Стебли в суровые зимы обмерзают и урожай фитомассы, а также семян снижается.

Встречается растение по всей республике. Скот почти не поедает его.

Лядвенец рогатый (Lotus corniculatus L.) — многолетнее растение, На одном месте может произрастать до 15 лет. Длина стебля у него достигает 40 см. Корень стержневой, деревянистый, проникает на глубину до 1 м. Цветет растение с мая по сентябрь. Семена созревают в июне—октябре. Возобновительная пособность у лядвенца довольно низкая. По содержанию протеина он превостодит другие бобовые растения. Встречается по всей республике.

Горошек (Vicia silvatica, cracca L.) — многолетнее травянистое растение. Стебли у него лежащие или цепляющиеся, длиной до 150 см. Корни проникают на глубину до 1 м. Цветет в мае—июле. Семена созревают в июле—августе. Размножается семенами и корнями. Это ценное кормовое растение. Среднее покрытие им почвы в изучаемых типах леса не превышает 5 %, в отдельных мес-

тах достигает 70-100 %. Встречается по всей республике.

Клевер люпиновый (Trifolium lupinaster L.) — многолетнее травянистое растение высотой 20—30 см. Корни его проникают на глубину до 1 м. Цветет он в июне—июле. Размножается семенами. Семена созревают в августе—сентябре. Средняя встречаемость клевера люпинового и покрытие им почвы не превышают 5 %. Часто встречается по всему Предполесью от широты, на которой располагается Минск, на севере до Полесской низменности на юге.

Образцы для анализов отбирались в период созревания семян в сосняках Негорельского учебно-опытного, Воложинского, Молодечненского и Узденского лесхозов. Биоэкологические свойства растений описывались по литературным данным [2,3], надземная масса определялась на учетных площадках размером 0,1–1,0 м², масса корней — в почвенных монолитах размером 1,25×0,25×0,50 м. Повторность учета была 10-кратной. В средних образцах восле мокрого озоления их колориметрическим методом определялись азот и рассфор, на пламенном фотометре — калий. Другие элементы определялись после сухого озоления образцов на атомно-эмиссионном спектрометре "Плазма ИЛ-100".

Согласно шкале Баранника и Калинина, изучаемые растения отличаются высокими мелиоративными свойствами (1), нетребовательны к плодородию почвы (1), среднесветолюбивы (2). Клевер люпиновый отличается высокой (1), многолетний люпин — средней (3), все другие растения — менее высокой (2) засухоустойчивостью. Морозоустойчивость лядвенца рогатого, клевера люпинового, горошков и люпина высокая (1), жарновца метельчатого и дрока красильного — средняя (2). Перечисленные свойства растений-биомелиорантов следует учитывать при отборе их для введения в междурядия лесных культур или под полог леса.

Нами установлено, что неравномерное размещение растений-биомелиорантов по площади, разная их густота и высота способствуют повышению коэффициента варьирования массы надземных органов и корней. В зависимости от вида растений этот показатель для массы надземной части растений составил 11,3—51,8 %, корней — 19,8—60,0 %, а точность учета — соответственно 4,8—16,3 и 4,7—19,0 %. Самый высокий коэффициент варьирования и самый низкий процент точности учета оказался у горошков (табл. 1). В зависимости от вида растений масса надземных органов варьировала в пределах 42—285 г/м², корней — 13—265 г/м². Максимальную массу наращивает многолетний люпин, введенный в междурядия культур. Масса многолетних надземных органов в среднем достигает 34—72 %. У однолетних растений надземная масса ежегодно отмирает и поступает на поверхность почвы и в почву. У жарновца, дрока и лядвенца ежегодно на поверхность почвы и в почву поступают только листья, цветки, бобики, семена и отмирающие многолетние стебли. Их масса в зависимости от вида растения составляет 28—66 % надземных органов.

Данные химического анализа (табл. 2) свидетельствуют о довольно высоком содержании в надземных органах и корнях азота, кальция и калия. Как оказалось, максимальное количество азота содержится в надземной части лядвенца рогатого. Это связано с тем, что у данного растения формируется большое количество листьев, цветков и плодов. Соотношение указанных выше макроэлементов соответственно составляет в надземной массе (50-60): (5-7): (10-23): (16-22): (3-5), в корнях -(43-63): (6-7): (5-18): (14-33):

Таблица 1
Абсолютно сухая масса растений, г/м²

Вид растения	Надзе	мные органы	
	всего	в том числе многолетние, %	Корни
Жарновец метельчатый	199 ∓ 10,6	72,1	119 ∓ 6,6
Дрок красильный	$137 \mp 10,3$	64,9	79 + 6,5
Лядвенец рогатый	44 + 4,4	34,3	13 + 0.9
Клевер люпиновый	42 + 3,1	4	37 ∓ 2,2
Горошки лесной, мышиный	56 ¥ 9,1	2	18 + 3,4
Люпин многолетний	285 ∓ 13.8	-	265 ∓ 12,4

Содержание макро- и микроэлементов в абсолютно сухой массе растений

Вид растения		0	В процентах	центах						B	B Mr/Kr				
	зола	Z	Ь	X	Ca	Mg	Fe	Mn	Zn	J.	ပ္ပ	Pb	Ş	Ü	
Жарновец метельчатый:					ı										
надземная часть	5,38	2,47	0,22	0,42	0,83	0,18	244	146	94	13	7	=	21	(C	
корни	4,92	2,12	0,23	0,15	0,71	0,14	195	58	15	9		5	6	2	
Дрок красильный;															
нацземная часть	4,78	2,42	0,20	0,44	0,79	0,20	252	141	283	12	1	6	16	2	
корни	2,51	1,03	0,12	0,16	0,72	0,15	263	55	34	5	0	4	7	m	
Лядвенец рогатый:															
надземная часть	7,43	3,29	0,35	0,84	1,02	0,27	261	132	59	10	2	v	24	c	
корни	3,52	1,96	0,23	0,58	86.0	0,25	184	64	17	7	0	\$	7	. —	
Клевер люпиновый:															
надземная часть	8,18	2,66	0,30	98,0	1,15	0.27	162	226	65	10	ن	C	53	6	
корни	4,23	2,54	0,27	0,44	0,74	0,19	1117	52	11	œ	0	0	12	7	
Горошек лесной, мышиный:															
надземная часть	7,62	2,80	0,28	06'0	92,0	0,15	205	159	247	11	0	9	34	v	
индом	5,95	3,08	0,30	0,85	08'0	0,15	123	48	109	9	0	4	16	4	
Люпин многолегний:															
надземная часть	2,06	2,21	0,30	1,02	69'0	0,20	529	317	564	9	153	7	58	47	
корни	5,58	2,67	0,32	0,83	99'0	0,14	281	48	215	2	29	7	15	,	

(3—7). Масса многолетнего люпина по содержанию азота и зольных элементов незначительно отличается от таковой дикорастущих растений-биомелиорантов. Но, как отмечалось, доля участия их в напочвенном покрове ничтожно мала и ежегодные дополнительные поступления органического вещества, а также биологически связанного азота на поверхность почвы и в почву несущественны. Повышение доли участия дикорастущих биомелиорантов в напочвенном покрове искусственным путем способствовало бы интенсификации биологического круговорота веществ и лучшей обеспеченности древесных растений азотом и зольными элементами.

Содержание таких жизненно важных для растений элементов, как цинк, железо, марганец [4, 5], в анализируемых растениях довольно высокое. Вовлечение дополнительного их количества в биологический круговорот будет способствовать интенсификации энергетического, азотного и вторичного обмена, а также ферментативной активности у всех растений фитоценоза. Содержание кобальта, свинца, стронция и хрома в надземной массе и корнях исследуемых биомелиорантов очень низкое. Только в массе люпина отмечается повышенное содержание кобальта, наиболее важной метаболической ролью которого считается участие в процессе фиксации атмосферного азота [5].

Полученные данные необходимо учитывать при планировании и проведении мелиоративных работ. В связи с тем, что масса биомелиорантов значительно варьирует, при проведении исследований следует увеличивать количество

учетных площадок.

ЛИТЕРАТУРА

1. А з н и е в Ю.Н. Биологическая мелиорация лесов // Справ. раб. лесн. хоз-ва. — Минск, 1986. 2. Флора БССР / Васильев В.Н., Горшкова С.Г., Грубов В.И. и др. — Минск, 1950. — Т. 3. 3. Ж и л к и н Б.Д. Повышение продуктивности сосновых насаждений культурой люпина. — Минск, 1974. 4. Ш к о л ь н и к М.Я. Микроэлементы в жизни растений. — Л., 1974. 5. Ж и з н е в с к а я Г.Я. Медь, молибден и железо в азотном обмене бобовых растений. — М., 1972.

УДК 630*181.34

В.А. ИПАТЬЕВ, К.Л. ЗАБЕЛЛО, В.В. ЦАЙ, Ю.Ю. ТОМАШЕВИЧ

ПОЧВЫ ДРЕВЕСНО-КУСТАРНИКОВОГО ПИТОМНИКА "ДЕКОРАТИВНЫЕ КУЛЬТУРЫ" И ИХ ИСПОЛЬЗОВАНИЕ

Масштабы зеленого строительства в нашей стране, в том числе и в г. Минске, непрерывно расширяются. Поэтому все больше требуется добротного посадочного материала. Основным источником его при озеленении г. Минска является древесно-кустарниковый питомник "Декоративные культуры". Однако почвы в нем слабо изучены. Это затрудняет решение вопросов размещения древесно-кустарниковых пород с учетом их требовательности к почвенно-грунтовым условиям и эффективное проведение мероприятий, направленных на повышение плодородия почв.