отрубе: от 13 до 19,9 см и от 20 см и выше. Все расчеты технической спелости следует вести, ориентируясь на получение деловой древесины с диаметром в верхнем отрезе от 20 см и выше.

В этом случае возникает вопрос о необходимости повыщения возраста рубки на один класс (см. табл. 1). Только таким путем можно ликвидировать дефицит в деловой древесине за счет увеличения выхода крупномерной деловой древесины с единицы площади, а также за счет улучшения качества получаемых сортиментов.

СПИСОК ЛИТЕРАТУРЫ

1. Антанай тис В.В. Закономерности лесной таксации. Каунас, 1976. С. 47-52. 2. Анучин Н.П. Сортиментные и товарные таблицы. М., 1968. З. Арлаускас Л.С. Составление и моделирование сортиментно-сортных и товарных таблиц еловых древостоев с применением ЭВМ//Вопр. повышения продуктивности лесов. Каунас, 1979, 4, Дво рецк и й М.Л. Пособие по вариационной статистике. М., 1971. 5. Дмитрах О.В. Строение, динамика роста и товарной структуры сосновых насаждений западной части Украинского Полесья, М., 1982. 6. Ермаков В.Е. Продуктивность лесов Белоруссии и пути ее повышения: Автореф. дис. ... д-ра с.-х. наук. Ленинград, 1984. 7. Комплекс программ моделирования и решения задач программирования в условиях АСПР. Мн., 1981. С. 4-25. 8. Лехнович Е.П. Условия и факторы размещения лесопильного производства // Оптимизация развития лесн. и деревообрабатывающей пром-сти. Мн., 1973. С. 125—145. 9. Математическое обеспечение ЕС ЭВМ. Ин-т математики АН БССР. Мн., 1982. Вып. 6. С. 39-40. 10. Моисеен ко Ф.П. Товарность лесов БССР. Мн., 1974, 11, Моисеенко Ф.П., Багинский В.Ф. Оптимальные возрасты рубок в лесах Белоруссии. Каунас, 1974. C. 64-67. 12. H а р о д н о е хозяйство Белорусской ССР в 1986 г.: Стат. c6. Mн., 1987. C. 62-63. 13. Проблемы повышения продуктивности лесов. М.; Л., 1961. T. 4. C. 128—139. 14. Машкалев А.Г. Научные основы таксации товарного строения древостоев: Автореф. дис. ... д-ра с.-х. наук. Л., 1979.

УДК 630*228 + 630*181

В.П.МАШКОВСКИЙ, В.Е.ЕРМАКОВ

ИССЛЕДОВАНИЕ СОСТАВА ХВОЙНЫХ ЛЕСОВ БЕЛОРУССИИ И ЕГО СВЯЗИ С УСЛОВИЯМИ МЕСТОПРОИЗРАСТАНИЯ

Для более полного использования потенциального плодородия лесных земель важное значение имеет формирование оптимального породного состава насаждений. В этой связи представляет интерес изучение породного состава лесов и его зависимости от условий местопроизрастания.

Такого рода исследования уже проводились в Белоруссии для некоторых древесных пород. Например, для сосново-еловых древостоев обнаружено, что их состав связан с условиями местопроизрастания. При ухудшении этих условий доля сосны в составе увеличивается, а ели падает [1, 2]. Аналогичная закономерность отмечена также для ельников [3] и сосняков [4]. В осиновых древостоях коэффициент состава для главной породы с улучшением почвенно-грунтовых условий повышается [5].

Данные исследования проводились с целью изучения особенностей породного состава сосняков и ельников и его связи с условиями местопроизраста-

ния. Анализировались материалы по десяти лесхозам республики: Белыничскому, Быховскому, Глубокскому, Кличевскому, Копыльскому, Костюковичскому, Любанскому, Полоцкому, Стародорожскому и Щучинскому. Лесхозы отбирались таким образом, чтобы по возможности охватить все лесорастительные зоны республики и, следовательно, получить более полное представление о породном составе хвойных лесов Белоруссии.

На основании документов лесоустроительного проектирования (форма 3.3 "Средние таксационные показатели насаждений по классам возраста в пределах типов леса") были вычислены средние составы и как важная характеристика условий местопроизрастания средние бонитеты сосновых и еловых насаждений по каждому типу леса в целом для всех десяти лесхозов.

Зависимость между составом и условиями местопроизрастания исследовалась с использованием методов регрессионного анализа [6]. Согласованность уравнений регрессии с экспериментальными данными устанавливалась сравнением F-критерия Фишера с табличным значением для уровня значимости $\alpha=0.05$, а для оценки коэффициентов регрессии применялся t-критерий Стьюдента [7]. В качестве характеристики типов леса наряду со средним бонитетом использовались также гигро- и трофотоп [8]. Чтобы иметь возможность использовать качественные показатели в уравнениях регрессии, применялись индексные переменные. Трофотопы A, B и C оценивались значениями 1, 2 и 3 соответственно. В качестве показателя влажности использовался индекс гигротопа. Бонитетам I^a , I—V, V^a и V^b ставились в соответствие величины 0,1—5, 6 и 7.

Таблица 1. Средний состав сосняков по типам леса

T	Коэффициент состава						
Тип леса	сосна	береза	ольха черная	ель	дуб	осина	
Лишайниковый	9,9	0,1	_	_	_	_	
Вересковый	9,4	0,6	-	_	_	_	
Брусничный	9,3	0,6	_	0,1	_	_	
Мшистый	9,2	0,6	_	0,2	_	_	
Орляковый	8,3	1,1	_	0,4	0,1	0,1	
Кисличный	7,4	1,1	_	1,2	0,1	0,2	
Черничный	8,0	1,5	_	0,4		0,1	
Приручейно-травяной	5,9	2,8	0,6	0,4	0,1	0,2	
Долгомошный	8,3	1,5	0,1	0,1	_	_	
Багульниковый	9,5	0,5	_	_	_	_	
Осоковый	8,2	1,6	0,1	0,1	_	_	
Осоково-сфагновый	9,7	0,3			_	_	
Сфагновый	10,0		_	_	_	_	
Долгомошник мелиорированный	8,2	1,8	_			-	
Багульник мелиорированный	9,2	8,0	1_	_	_	_	
Осоковый мелиорированный	8,2	1,7	0,1	_		_	
О∞ково-сфагновый мелиорированный	9,8	0,2		_	_	_	
Сфагновый мелиорированный	10,0		-	-	-	-	
Средний состав	8,7	0,9	_	0,3		0,1	

Вычисленные средние составы сосняков и ельников приведены в табл. 1 и 2. Проанализировав эти данные, можно сказать, что доля запаса, приходящаяся на главную породу, в значительной степени изменяется в зависимости от типа леса. В сосняках эта величина колеблется от 5,9 в приручейно-травном до 10 в сфагновом и сфагновом мелиорированном типах леса и в среднем составляет 8,7 единицы состава. Для ельников коэффициент состава варьирует от 3,9 в осоковом мелиорированном до 7,1 в кисличном типах леса. Тем не менее состав ельников более сложен, нежели сосняков. На главную породу в ельниках приходится 68 % запаса. Это почти на 20 % меньше, чем в сосновых лесах. Второй по значимости породой как в сосняках, так и в ельниках является береза. В сосновых лесах на сосну и березу в сумме приходится почти весь запас древесины (96 %). Береза не встречается только в двух сосновых типах леса — сфагновом и сфагновом мелиорированном. В ельниках она присутствует повсеместно и вместе с елью составляет 80 % общего запаса.

В составе большинства сосновых типов леса также встречается ель. Нет ее только в неблагоприятных условиях местопроизрастания (сосняки лишайниковый, вересковый, а также типы леса с гигротопом 4 и более, за исключением сосняков долгомошного и осокового). Средний коэффициент состава ели равен 0,3. В наиболее богатых типах леса (сосняки орляковый, кисличный, приручейно-травяной) в небольшом количестве встречаются дуб (менее 1 %

Таблица 2. Средние составы ельников по типам леса

Tuesday	Коэффициент состава								
Тип леса	сосна	береза	ольха черная	ель	дуб	осина	граб	ясень	ольха серая
Брусничный	1,2	2,0	_	6,5	0,1	0,2			
Мшистый	1,3	1,1	0,1	7,0	0,1	0,4	-	-	_
Орля ковый	1,0	1,4	0,1	6,5	0,3	0,4	_	_	_
Кисличный	0,5	1,0	0,1	7,1	0,3	1,0	_	_	_
Черничный	1,0	1,5	0,2	6,3	0,1	0,9	_	_	_
Приручейно-травяной	0,5	1,6	1.7	5,8	0,1	0,3			_
Долгомошный	1,0	2,0	1,0	5,7	_	0,3	_	_	_
Осоковый	0,4	2,2	2,4	5,0	_	_	_	_	
Осоково-сфагновый	1,9	3,0	_	5,1		_	_	_	_
Снытьевый	0,1	1,7	8,0	5,2	0,4	1,3	0,1	0,2	0,2
Крапивный	0,4	1,3	1,8	5,5	0,1	0,7	0,1	_	0,1
Папоротниковый	0,4	1,6	1,5	6,0	_	0,5		_	_
Долгомошник ме- лиорированный	0,9	3,6	0,1	5,4	-	-	_		_
Осоковый мелиориро- ванный	1,2	4,1	8,0	3,9	-	-		_	_
Крапивный мелиориро- ванный	0,6	1,5	0,3	7,0	-	0,6	-	_	
Папоротник мелиори- рованный	0,4	8,0	2,0	4,8	0,5	1,5	-	-	-
Средний состав	0,7	1,2	0,2	6,8	0,2	0,9	-		_

общего запаса древесины) и осина (1 %). Последняя порода наблюдается также в черничном типе леса. Кроме того, в наиболее влажных и относительно богатых типах леса в породный состав сосновых лесов входит ольха черная (менее 1 % запаса).

В ельниках наряду с березой во всех типах леса есть сосна. Дуб, осина, ольха черная в еловых насаждениях встречаются значительно чаще и в большем количестве, чем в сосняках. Кроме того, в ельниках присутствуют такие породы, как граб, ясень, серая ольха.

В целом для сосняков можно отметить общую тенденцию к усложнению составов и уменьшению доли запаса, приходящейся на главную породу, в более богатых условиях местопроизрастания по сравнению с бедными. В ельниках же, напротив, с улучшением условий местопроизрастания коэффициент состава для главной породы увеличивается.

В результате регрессионного анализа были получены уравнения, связывающие коэффициенты составов различных пород с показателями, которые характеризуют условия местопроизрастания:

для сосновых насаждений

K _c = 7,606 + 0,3385;	(1)
$K_6 = 1,646 - 0,2015;$	(2)
K _e = 0,507-0,09756;	(3)
$K_n = 0.0538 - 0.01055;$	(4)
$K_{oc}^{2} = 0,103 - 0,01975;$	(5)
$K_c = 10,817 - 0,953\Gamma T + 0,120\Gamma^2 T;$	(6)
$K_6 = -0.174 + 0.492\Gamma T - 0.0582\Gamma^2 T;$	(7)
$K_e = -0.312 + 0.292\Gamma T - 0.0442\Gamma^2 T;$	(8)
$K_n = -0.0515 + 0.0351\Gamma T - 0.00473\Gamma^2 T;$	(9)
$K_{\rm oc} = -0,109 + 0,0706\Gamma T - 0,00921\Gamma^2 T;$	(10)
$K_{\text{олч}} = -0.150 + 0.0445\Gamma\text{T};$	(11)

для еловых насаждений

K _c = 0,266 + 0,2795;	(12)
$K_6 = 0.587 + 0.6856;$	(13)
$K_{p} = 6,751 - 0,4965;$	(14)
$K_n = 0.286 - 0.08385;$	(15)
K ₀ = 1,196 – 0,3505;	(16)
$K_c = 1,814 - 0,207\Gamma T + 0,0274\Gamma^2 T;$	(17)
$K_6 = 3,095 - 0,437\Gamma T + 0,0831\Gamma^2 T;$	(18)
$K_a = -5,697 + 0,293\Gamma T - 0,0742\Gamma^2 T;$	(19)
$K_n = -0.00540 + 0.0630\Gamma T - 0.0131\Gamma^2 T;$	(20)
$K_{\rm oc}^{\rm A} = -0,321 + 0,264\Gamma T - 0,0476\Gamma^2 T;$	(21)
$K_{OJH}^{OC} = -0.462 + 0.128\Gamma T,$	(22)

где K_c , K_6 , K_e , K_{d} , K_{oc} , K_{ont} — коэффициенты состава для сосны, березы, ели, дуба, осины и ольхи черной; E — индекс среднего бонитета; E — индекс гигротопа; E — индекс трофотопа.

Таблица 3. Статистические показатели уравнений регрессии

Номер уравнения	F-критерий Фишера	Коэффициент множественно регрессии R ²	Стандартная й ошибка оценки	Т-критерий Стьюдента для ко эффициентов регрессии при переменных		
	100			Б или ГТ	г ² т	
1	10,46	0,629	0,867	3,234	-	
2	6,26	0,530	0,666	-2,501	_	
3	11,99	0,655	0,233	-3,463	_	
4	6,89	0,549	0,033	-2,625	_	
5	8,04	0,578	0,058	-2,835	-	
6	15,46	0,821	0,658	-5,517	4,419	
7	4,47	0,611	0,642	2,919	-2,199	
8	40,86	0,919	0,125	8,862	-8,558	
9	18,93	0,864	0,022	6,153	-5,279	
10	75,57	0,954	0,022	12,267	-10,194	
11	7,90	0,575	0,120	2,812	_	
12	8,33	0,611	0,382	2,886	_	
13	18,64	0,756	0,628	4,317	_	
14	6,45	0,562	0,772	-2,541	_	
15	5,49	0,531	0,141	-2,342	_	
16	19,29	0,761	0,315	-4,392	_	
17	6,55	0,708	0,353	-3,218	2,277	
18	5,94	0,691	0,719	-3,346	3,394	
19	5,60	0,680	0,710	2,272	-3,070	
20	3,97	0,616	0,136	2,541	-2,816	
21	12,44	0.810	0,296	4,967	-4,732	
22	5,98	0,547	0,714	2,446	_	

Некоторые статистические показатели, характеризующие данные уравнения, приведены в табл. 3.

Проанализировав уравнения (1) — (5) и (12) — (16), показывающие связь коэффициентов состава с бонитетом для сосняков и ельников соответственно, можно выделить три группы пород по их отношению к качеству условий местопроизрастания. Для сосняков эти группы следующие: 1) сосна; 2) береза, ель, дуб, осина; 3) ольха черная. С улучшением бонитета сосна в составе замещается породами второй группы. Это, по-видимому, происходит потому, что с улучшением условий местопроизрастания конкурентоспособность сосны растет медленнее, чем других пород. У ольхи черной не обнаружено зависимости доли ее участия от бонитета в составе сосняков и ельников. Вероятно, это связано с тем, что главным фактором, влияющим на распространение данной породы, является влажность почвы.

Для ельников, как и для сосняков, в первую группу входит сосна, во вторую — ель, дуб, осина. Береза в еловых насаждениях с улучшением условий местопроизрастания замещается в составе другими породами.

Уравнения (6) — (10) и (17) — (21) более детально описывают связь состава сосняков и ельников с условиями местопроизрастания и имеют лучшие статистические характеристики, чем уравнения первой группы. Каждое из данных уравнений имеет вид $K = A_0 + A_1 \Gamma T + A_2 \Gamma^2 T$, где K -коэффициент состава;

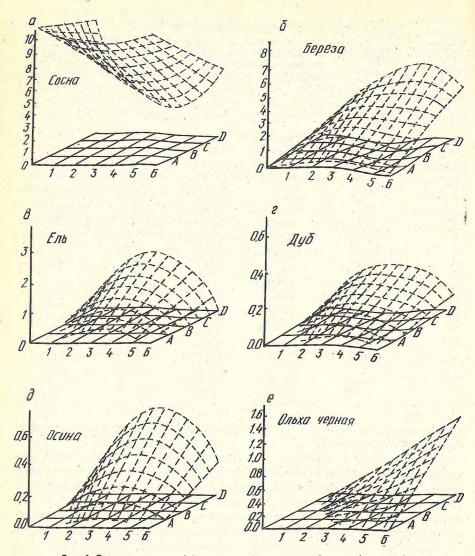


Рис. 1. Зависимость коэффициентов состава от эдафотопа (сосняки).

 A_0 , A_1 , A_2 — коэффициенты . регрессии.

При постоянном гигротопе коэффициент состава имеет линейную зависимость от трофотопа: $K = A_0 + T (A_1 \Gamma + A_2 \Gamma^2)$, зависимость же K от гигротопа при фиксированном трофотопе имеет вид параболы второй степени.

Формы поверхностей значений коэффициентов состава, которые построены по приведенным выше уравнениям на плоскости координат, являющейся здафической сеткой Погребняка, показаны на рис. 1 и 2. На рисунках видно уменьшение доли запаса насаждений, приходящейся на сосну (рис. 1, a; 2, a), и увеличение в составе ели (рис. 1, a; 2, a), дуба (рис. 1, a, 2, a) и осины

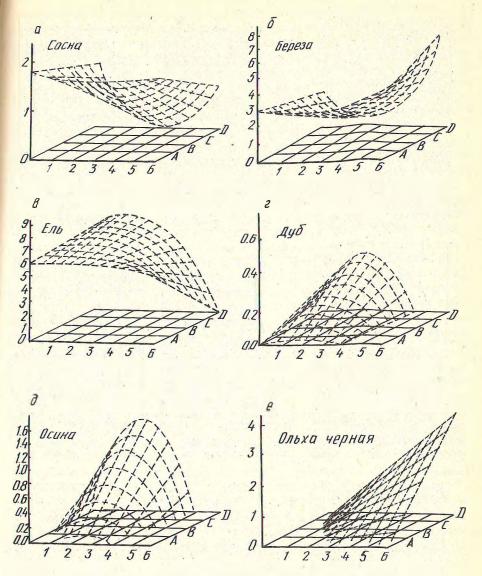
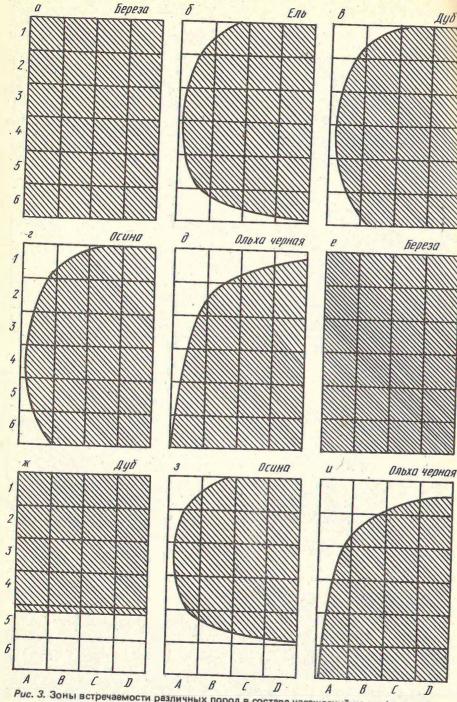



Рис. 2. Зависимость коэффициентов состава от эдафотопа (ельники).

(рис. 1, ∂ ; 2, ∂) при переходе от неблагоприятных условий местопроизрастания, имеющих эдафотопы A1, A6, к более благоприятным.

Береза, имеющая в сосняках выпуклую форму поверхности (рис. $1, \delta$), характерную для пород второй группы, в ельниках меняет ее на вогнутую (рис. $2, \delta$). Это позволяет нам расположить ее между сосной, с одной стороны, и елью, дубом, осиной, с другой, по скорости роста конкурентоспособности с улучшением условий местопроизрастания. В сосняках, где главным конкурентом березы является сосна, она замещает последнюю при переходе

Puc. 3. Зоны встречаемости различных пород в составе насаждений на эдафической сетке Погребняка.

от менее благоприятных условий к более благоприятным, а в ельниках, где березе в основном приходится конкурировать с елью, осиной и дубом, наоборот, доля ее в составе с улучшением условий местопроизрастания падает.

Области эдафической сетки, в которых коэффициенты состава различных пород, встречающихся в примеси, принимают положительные значения, изображены на рис. 3. Эти области построены на основании регрессионных уравнений связи коэффициентов состава с гигро- и трофотопом.

Нетрудно проследить закономерность; чем в меньшей степени представлена порода в среднем составе, тем в меньшем числе типов леса она встречается и тем более требовательной является к плодородию почвы. Так, береза и сосна, относящиеся к олиготрофным породам [9], встречаются в составе всех еловых типов леса, а береза присутствует также в примеси почти во всех сосновых. Далее идет примесь мезотрофов; ель (для сосняков, рис. 3, б) и осина (для сосняков, рис. 3, г и для ельников, рис. 3, 3), встречающиеся в относительно богатых типах леса. Завершает этот ряд наиболее требовательный к почвенным условиям дуб (рис. 3, ε , κ), который отмечен только в самых благоприятных условиях местопроизрастания. Особое место на эдафической сетке Погребняка заняла ольха черная (рис. 3, ∂ , u), ареал которой явно сдвинут в направлении увеличения влажности лочвы. Это видно и из уравнений регрессии (11), (22), в которых коэффициент при члене Γ^2 Т равен нулю, в связи с чем коэффициент состава для ольхи черной с увеличением гигротопа монотонно возрастает. Это хорошо иллюстрируют рис. 1, е и 2, е. В целом можно отметить, что все древесные породы в примеси встречаются в ельниках в большем числе типов леса, чем в сосняках.

В заключение можно сделать следующие выводы:

- 1. С улучшением условий местопроизрастания доля сосны в составе насаждений падает, а доля ели, осины и дуба возрастает. Представленность березы в сосновых лесах увеличивается с улучшением условий местопроизрастания, а в еловых — уменьшается. Отмеченные закономерности, по-видимому, объясняются разной скоростью повышения конкурентоспособности различных пород с улучшением условий местопроизрастания. Встречаемость черной ольхи в составе сосняков и ельников определяется главным образом влажностью почвы.
- 2. Полученные уравнения не могут использоваться для интерполяции и прогноза, так как зависимыми переменными в них служат качественные показатели. Однако они могут оказать существенную помощь при анализе связи составов с условиями местопроизрастания.

СПИСОК ЛИТЕРАТУРЫ

1. Багинский В.Ф., Терехова Р.Л. Особенности роста сосны и ели при совместном произрастании в лесах Белоруссии // Лесоведение. 1982. № 6. С. 71—78. 2. Б агинский В.Ф. Продуктивность и территориальное размещение сосново-еловых древостоев в БССР // Лесохозяйств. пути повышения продуктивности лесов БССР. М., 1985. С. 58-67. З. Е р м а к о в В.Е. Исследование состава еловых древостоев // Лесоведение и лесн. хоз-во. Мн., 1969. Вып. 1. С. 156—159. 4. Ермаков В.Е., Машковс к и й В.П. Исследование состава сосновых лесов // Лесоведение и лесн, хоз-во, Мн., 1987. Вып. 22. 5. Петровский П.Я. Изменение состава осинников в зависимости от

возраста и условий местопроизрастания // Ботаника. Исслед. Мн., 1965. Вып. 7. С. 106—110. 6. С т а т и с т и ч е с к и е методы для ЭВМ / Под ред. К.Энслейна, Э.Рэлстона, Г.С.Уилфа. М., 1986. 7. К о р н Г., К о р н Т. Справочник по математике для научных работников и инженеров. М., 1984. 8. Ю р к е в и ч И.Д. Выделение типов леса при лесоустроительных работах. Мн., 1980. 9. М е л е х о в И.С. Лесоведение. М., 1980.

УДК 630*566:681.31

О.А.АТРОЩЕНКО, А.Г.КОСТЕНКО

ПРОИЗВОДИТЕЛЬНОСТЬ СОСНОВЫХ ДРЕЗОСТОЕВ БЕЛОВЕЖСКОЙ ПУЩИ ПО ПОЧВЕННО-ТИПОЛОГИЧЕСКИМ ГРУППАМ

Интенсификация лесного хозяйства связана с устройством лесов на почвенно-типологической основе. В нашей стране с 1959 г. проводятся работы по почвенно-типологическому обследованию лесов, что позволило произвести классификацию роста и производительности древостоев на почвенно-типологической основе.

В практике лесоустройства Белоруссии применяется классификация условий местопроизрастания по почвенно-типологическим группам (ПТГ), разработанная на лесотипологической основе с учетом степени влажности и богатства почвы, характера подстилающей породы [1, 2].

По материалам повторного лесоустройства лесов Беловежской пущи в 1981 г. получены данные, характеризующие фактическую производительность сосновых древостоев по ПТГ. При этом было выделено 13 ПТГ сосняков; 1) лишайниковые, произрастающие на дерново-подзолистых, рыхло-песчаных автоморфных почвах; 2) мшисто-вересковые на дерново-подзолистых (ДПЗ) автоморфных, реже внизу оглеенных рыхло-песчаных почвах; 3) вересково-мшистые на ДПЗ автоморфных и внизу оглеенных песчаных почвах; 4) мшисто-орляковые на ДПЗ автоморфных, внизу оглеенных и контактно оглеенных почвах на двучленных породах; 5) мшисто-орляково-черничные на ДПЗ временно избыточно увлажняемых песчаных почвах; 6) орляково-черничные на ДПЗ временно избыточно увлажняемых почвах на двучленных породах (песок-суглинок); 7) сосняки черничные на ДПЗ глееватых и глеевых песчаных почвах; 8) орляково-черничные на ДПЗ глееватых и глеевых почвах на двучленных породах; 9) долгомошные на ДПЗ и торфяно-подзолистых почвах; 10) долгомошно-багульниковые на торфяно-болотных почвах верхового типа; 11) осоково-сфагновые на торфяно-болотных почвах верхового типа; 12) сфагновые на торфяно-болотных почвах верхового типа; 13) долгомошно-багульниковые на мелиорируемых торфяно-болотных почвах верхового типа.

По данным глазомерно-измерительной таксации древостоев (6896 таксационных выделов), на ЕС ЭВМ вычислены средневзвешенные (вес наблюдений — площади таксационных выделов) по классам возраста значения состава, класса бонитета, диаметра, высоты, относительной полноты и запаса древостоев для первого и второго ярусов, запасы древостоев (м³/га) приведены к полной единице.