ково-пушицево-сфагновые, бонитет соснового древостоя V^6 ; 4) переходные осоково-багульниково-сфагновые, древостой сосны с участием березы пушистой V^a бонитета; 5) переходные осоково-травяно-багульниково-сфагновые, древостой сосны с участием березы пушистой V бонитета; 6) низинные травяно-сфагновые, древостой сосны с участием березы пушистой, ольхи черной, осины, ели IV-V бонитетов; 7) осоково-травяные, древостои ольхи черной, березы, ели I-III бонитетов.

В настоящей статье изложены результаты исследований лесных насаждений, сформированных после осущения и вырубки древостоя. Давность осущения 65 лет. Рубка леса произведена спустя 5—7 лет после осущения. Болото было осущено экстенсивно: редкими канавами. Расстояние между канавами 1 км. Мощность торфа более 300 см. Через 65 лет канавы, хотя и обмелели и заилились, но находились в рабочем состоянии. Однако уровень грунтовых вод в период исследований был довольно высок (табл. 1). Судя по степени разложения торфа, на расстоянии от канавы до 100 м уровень грунтовых вод в первые годы после осущения был ниже. С удалением от канавы на 100 м и более уровни грунтовых вод и степень разложения торфа близки к таковым на неосущенных болотах. Бонитет соснового древостоя до осущения был V^а, что установлено по отдельным сохранившимся деревьям 120—140-летнего возраста.

Как видно из табл. 1, бонитет и полнота леса соответствуют уровню грунтовых вод и расстоянию от канавы. Произошла смена сосновых древостоев после их рубки на березу. И только вблизи канавы преобладает ель. Можно полагать, что после осушения произошло возобновление ели под пологом леса, на что указывает более высокий возраст ели. В соответствии с интенсивностью осушения изменился и травяно-моховой покров (табл. 2).

Вблизи канавы практически нет сфагновых мхов, произошла их замена на зеленые мхи. Здесь сформировался зеленомошно-черничный покров. Отмечено значительное участие осоки черной. На расстоянии 100 м от канавы сфагновые мхи деградировали, но сохранились в небольшом количестве, не создают сплошного ковра, растут небольшими группами по понижениям. На расстоянии 200 м от канавы при среднем уровне грунтовых вод 30 см в течение вегетационного периода сохранились сплошной сфагновый покров, пушица и клюква. За счет увеличения запаса древостоя биологическая продуктивность травяно-мохового покрова снизилась в 5—8 раз.

УДК 630*114.12

Л.П.СМОЛЯК, К.Ф.САЕВИЧ, М.А.ГОЛЬБЕРГ

ПАРАМЕТРЫ ФИЗИЧЕСКОГО ИСПАРЕНИЯ ИЗ ПОЧВЫ В ХВОЙНЫХ НАСАЖДЕНИЯХ И В ПОЛЕ

Лесоводственная и лесогидрологическая литература по вопросу снегозадержания кронами деревьев осадков в лесу весьма обширна. Много сведений о суммарном испарении лесом. Но недостаточно изучено физическое испарение из почвы в лесу, на лугах, сельскохозяйственных полях, болотах, что затрудняет водно-балансовые расчеты.

Исследования проводились в однородных условиях на супесчаной почве на двух участках: полевая метеорологическая площадка водобалансовой станции (ВБС) Городище (открытая поляна с преобладанием злакового разнотравья) и лесная метеорологическая площадка (кв. 50 Центрального лесничества Негорельского учебно-опытного лесхоза).

Таксационная характеристика древостоя на лесной метеорологической пробной площади: тип леса — сосняк мшистый; состав — 10 Сед.; Б; возраст — 60 лет; $H_{\rm cp}$ — 22,1 м; \mathcal{A}_{cp} — 21,9 см; число стволов — 730 шт/га; сумма площадей сечений — 27,8 м²; полнота — 0,9; запас — 282 м³; бонитет — 1.

Подрост в данных условиях слагают ель, береза, осина; подлесок представлен крушиной, рябиной, можжевельником.

Травяной покров на водобалансовом участке представлен злаками. Взятие почвенных монолитов в испарители производилось 1 раз в месяц 26 числа, взвешивание испарителей — 18—20 раз в месяц: утром (в 7—8 ч по летнему времени) 1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26, 27 числа и вечером (с 21 до 22 ч) 1, 6, 11, 16, 21, 26 числа.

Влажность почвы (9—10 образцов с изучаемого горизонта) определялась 1, 6, 11, 16, 21, 26 и 8, 18, 28 числа в соответствии с планом агроработ на ВБС Городище.

Метеорологические работы и наблюдения осуществлялись по плану работ на 1984 г. согласно Наставлению метеорологическим станциям и постам.

Наблюдения за испарением производились одновременно: по трем микроиспарителям (с приемной поверхностью 63 см²) в поле, шести в лесу и двум испарителям ГГИ-500-50 на ВБС Городище в сроки, определенные Руководством по производству наблюдений над испарением с почвы и снежного покрова. Микроиспарители взвешивались на технических весах, а также весах ВЛТ-500 с точностью до 0,1 г.

ГГИ-500-50 взвешивались на весах ВЛТ-500. Во время взятия почвенных монолитов и их взвешивания замерялся уровень грунтовых вод в скважинах, а также приход солнечной радиации на открытом месте и под пологом древостоя. Если в день взвешивания монолитов шел дождь, то взвешивание производилось сразу после дождя.

Травяно-моховой покров представлен в основном зелеными мхами, из трав преобладают папоротник-орляк, земляника, брусника, плауны, ястребинка волосистая, черника.

При изучении физического испарения из почвы нами использованы микроиспарители — алюминиевые сосуды диаметром 9 см, глубиной 8 см. Это дало возможность изучать испарение в разнообразных условиях в лесу и поле: в микрофитоценозах мхов, трав, в тени деревьев, солнечных бликах, открытых местах. Исследования проводились в течение вегетационного (бесснежного) периода 18—20 раз в месяц 6 раз в сутки. Сосуды взвешивались на весах ВЛТ-500 с точностью до 0,1 г. Возможность использования микроиспарителей определялась сравнением с показателями стандартного испарителя ГГИ-500-50.

В статье сравниваются данные по почвенному испарению за периоды без выпадения осадков, так как конструкция микроиспарителя не предусмат-

Таблица 1. Интенсивность испарения

Период наблюдений —	Испарение по м	икроиспарителям, мм
тприод наотнодении	поле	лес
		4.
1-6/V	2,9	1,1
611/V	1,7	1,0
1621/V	6,7	1,3
6-11/VI	5,2	2,2
2-7/VII	2,7	0,7
16-21/VIII	2,9	2,1
22-26/X	2,3	1,1

ривает стока воды через монолит и дно испарителя. Согласно данным, полученным по ГГИ-500 и микроиспарителям, установленным в поле, рассчитано уравнение прямолинейной регрессии: y = 0.606x + 0.488, где y = 0.606x + 0.488

Взаимосвязь между испарением по двум названным способам характеризуется высоким коэффициентом корреляции (r = 0.894). Это подтвердило возможность получения величины испарения в лесу по микроиспарителям.

Проведенные исследования показали, что режим и суммарное испарение в значительной степени определяются особенностями испаряющей поверхности, в рассматриваемом случае — почва под пологом сосняка мшистого и почва на открытом месте. Так, испарение в лесу в сравнении с пологом в соответствии с данными, полученными в 1983 г. по микроиспарителям, изменялось на протяжении вегетационного периода от 20 до 70 % и в среднем составило 43 % (табл. 1).

В 1984 г. испарение под пологом леса составило 39 % испарения в поле. Наибольшее испарение было отмечено в декады, характеризующиеся большим выпадением осадков и сравнительно высокими температурами воздуха. Так, во 11 и 111 декадах мая и июня количество выпавших осадков было близко к месячной норме.

Испарение из почвы в названные и следующие за ними декады (июль) в 1983 г. было также сравнительно высоким (17,3—32,8).

Следует отметить, что наблюдается совпадение периодов повышения относительной влажности и испарения.

Зная суммарное испарение по декадам и месяцам, а также соотношение суммарного испарения в лесу и поле по микроиспарителям (43 и 39 %), мы получили данные по испарению на лесной метеорологической площадке в условиях сосняка мшистого (табл. 2).

Из табл. 2 видно, что суммарное испарение почвенной влаги на открытом месте более чем в 2 раза превышало испарение под пологом древостоя на лесной метеорологической площадке.

Испарение за вегетационный период 1983 г., согласно данным, полученным по испарителям ГГИ-500-50, составило 317 мм, за 1984 г. — 200 мм, или 70 % от предыдущего года.

В лесу в условиях сосняка мшистого за 1983 г. влаги испарилось 135 мм, за 1984 г. — 87 мм, или 65 %. Это связано с различными погодными условия-

Таблица 2. Испарение за вегетациоиный период 1983/84 года на полевой и лесной метеорологических площадках

	теоэлементов на открытом месте	тов на открытом месте	крытом ме	сте								
Месяп	Tewnena-	OTHOCK-	CKODOCTL	270820		полев	полевая площадка	co.		лесная	лесная площадка	
	тура воз- духа, оС	тепъная влаж- ность возду- хв, %	ветра,	WW	Декада	П	декада	за месяц	I декада	П	цекада	месяц
Май	15,5	73	1/7	63,5	3,9	21,7	24,8	31,2	3,0	6,9	10,6	22,9
Июнь	15,1	73	1,8	98,6	7,4	17,3	32,8	57,5	3,1	7,1	14,1	19,3
Июль	16,9	08 62	1,8	50,9	32,0	21,9	16,9	70,8	14,0	9,4	7,2	29,6
ABIYCT	16,8	77	1,4	13,2	15,2	10,5	8,0	27,9	0,0 0,0	2,0	3,4	11,9
Сентябрь	13,6	74	1,8	82,9	3,6	9,7	73,1	86,4	1,5	3,7	3,4	37,0
Октябрь	7,0	83 83	2,4	32,5	13,3	4,5	7,7	31,2	3,8	1,9	3,3	9,0
Итого.	1	1	1	341,6	-f,	T	t	317,4	1	1	1	135,0

ми за сравниваемые годы. Среднемесячные температуры с мая по октябрь в 1983 г. были выше на 1—1,7 °С. Однако в августе 1984 г. при более низкой сроднемесячной температуре (см. табл. 2) влаги испарилось 42,5 мм, а в 1985 г. — 27,9 мм. Наибольшие различия (примерно в 2 раза) в интенсивности испарения и количестве выпадавших осадков совпадали (в 3—4 раза). Это указывает на зависимость процессов испарения от количества выпавших осадков и влажности поверхностных слоев почвы.

Интенсивность испарения днем значительно превышает интенсивность испарения ночью. В некоторых случаях в результате конденсации паров и образования росы масса испарителей утром превышает их массу вечером.

Испарение на полевой площадке ночью составило в среднем (за сутки без выпадения осадков) 0,2 мм, или 15 % испарения за день (1,4 мм). Диапазон колебания параметров испарения ночью 0,01—0,48 мм, днем 0,02—4,1 мм.

В лесу ночью в течение этих же суток испарение составило 30 % дневных значений (0,16 и 0,48 мм). Диапазон колебаний днем 0,06—2,4 мм, ночью 0,02—0,54 мм.

В задачу наших исследований входило выявление параметров испарения и установление степени влияния отдельных метеорологических факторов на его процессы. С этой целью мы произвели многофакторный регрессионный анализ на ЭВМ ЕС 1020. Для анализа данных по влиянию метеорологических факторов на испарение (y — зависимая величина) днем мы учитывали влажность почвы — x_1 (в %), температуру воздуха — x_2 (в $^{\rm O}$ С), температуру на поверхности почвы — x_3 , температуру на глубине $^{\rm E}$ С см — x_4 , температуру почвы на глубине $^{\rm E}$ 0 см — $^{\rm E}$ 2, относительную влажность — $^{\rm E}$ 3 (в %) и суммарную радиацию — $^{\rm E}$ 4 (в мДж/м $^{\rm E}$ 3).

Было получено уравнение $y = -0.56 + 0.14x_1 + 0.02x_2 + 0.03x_3 - 0.02x_4 + 0.02x_5 - 0.01x_6 + 0.05x_7$.

Найболее значимыми из факторов явились влажность почвы, температура на поверхности почвы и приход солнечной радиации. Критерии значимости (T) для названных факторов составили в данном уравнении наибольшие величины. Когда мы исключили из анализа седьмой фактор, получилось уравнение $y = 0.30 + 0.17x_1 - 0.05x_2 + 0.11x_3 + 0.11x_4 - 0.09x_5 - 0.03x_6$.

Значения Т-критерия составили для $x_1 - 4,75$, $x_3 - 1,23$, $x_6 - 2,05$. Без учета менее значимых факторов (температуры воздуха, почвы на глубине 10 см, относительной влажности воздуха) уравнение приняло вид $y = -1,3 + 0,12x_1 + 0,03x_3 - 0,004x_4 + 0,07x_7$.

Коэффициент множественной регрессии для приведенных выше уравнений K=0.76.

Однако получить в полевых условиях значения суммарной радиации, влажности и температуры почвы весьма трудно (необходимы приборы M-80, M-29, X-607, TM-5). Поэтому представляет интерес определение испарения в зависимости от температуры воздуха, на поверхности почвы и относительной влажности воздуха, т.е. от метеорологических параметров, которые можно получить при помощи психрометра Асамана и термометров TM-3; $y = 0.88-0.10x_2 + 0.13x_3 - 0.007x_6$.

В уравнении с одной зависимой (y) и одной переменной (x_3) $y = 0.06x_3$

Т = 2,47 (для значимых факторов Т должно быть больше 2), однако высокая относительная ошибка уравнения указывает на его недостоверность. Коэффициент детерминации (множественной регрессии) — 0,40. В связи с этим уравнение может быть использовано лишь при грубых подсчетах.

В процессе выявления степени влияния метеорологических факторов на испарение ночью учитывалось 6 переменных, так как приход солнечной радиации в это время равен 0: $y=0.22+0.005x_1+0.012x_2-0.02x_3+0.04x_4-0.01x_5+0.01x_6$.

Наиболее значимыми явились влажность почвы, температура на поверхности почвы, относительная влажность воздуха, наименее значимыми — температура почвы на глубине 5 и 10 см.

С учетом трех переменных — температуры воздуха и на поверхности почвы, относительной влажности воздуха мы получили уравнение $y = 0.25 + 0.003x_2 - 0.017x_3 + 0.001x_6$.

С двумя переменными (температура и относительная влажность воздуха) уравнение приняло вид $y=0.28-0.011x_2+0.001x_6$.

Коэффициент множественной регрессии очень низкий (0,28), что указывает на возможность получения лишь приближенных величин испарения.

Характеризуя влияние метеорологических факторов в дни без выпадания осадков на лесной площадке, следует сказать, что из четырех факторов — влажность почвы (x_1) , температура (x_2) и относительная влажность воздуха (x_3) , приход солнечной радиации (x_4) — наиболее значимыми оказались x_4 (T = 2,29), x_1 (T = 1,92) и x_2 (T = 1,16). Влияние относительной влажности воздуха невелико (T = 0,004): $y = 0,63 - 0,018x_1 - 0,022x_2 + 0,001x_3 + 0,196x_4$ (K = 0,52).

Уравнение с учетом трех наиболее значимых факторов: $y = 0.63 - 0.018x_1 - 0.022x_2 + 0.196x_4$.

Критерий значимости для x_1 составил — 2,2, для x_2 — 1,2, для x_4 — 3,16. Величину испарения в зависимости от температуры и относительной влажности воздуха (приближенные значения) можно получить по уравнению $y = 1,79 - 0,0007x_2 - 0,017x_3$ (K = 0,36).

Ночью в сосняке мшистом (на лесной площадке) из трех анализируемых факторов (x_1, x_2, x_3) в отличие от дневного времени влияние относительной влажности воздуха на испарение выше влияния влажности почвы, однако ниже влияния температуры воздуха: $y = 0.36 + 0.006x_1 - 0.007x_2 - 0.001x_3$. Это свидетельствует о том, что на процессы испарения в лесу определяющее влияние оказывают температура и относительная влажность воздуха, параметры которых обусловливают процессы испарения либо конденсации.

Таким образом, можно сделать следующие выводы:

1. Испарение с почвы за вегетационный период 1983/84 года в условиях сосняка мшистого составило соответственно по годам 43 и 39 % (или 135 и 87 мм) испарения на полевой метеорологической площадке (317 и 221 мм).

2. Интенсивность испарения днем значительно превышает интенсивность испарения ночью. Испарение на полевой площадке ночью составило в среднем (за сутки без выпадения осадков) 0,2 мм, или 15 % испарения за день (1,4 мм). В лесу ночью испарение составило 30 % дневных значений (0,16 и 0,48 мм).

 Наибольшее влияние на испарение с почвы днем оказывают влажность почвы, приход солнечной радиации и температура на поверхности почвы.

Ночью сила влияния факторов располагается в следующей очередности (в порядке уменьшения): влажность почвы, температура на ее поверхности, температура и относительная влажность воздуха.

Под пологом леса днем значимость факторов находится в такой последовательности: приход солнечной радиации, влажность почвы, температура и относительная влажность воздуха.

Ночью же, наоборот, температура и относительная влажность воздуха оказались более значимы, чем влажность почвы, так как в это время наряду с испарением имеет место конденсация влаги.

4. Полученные данные и закономерности объясняют возможность и целесообразность лесоразведения в степи. Сомкнутый лес экономит около 100 мм влаги в почве, что обусловливает его устойчивость и рост. Чем меньше водообеспеченность, тем гуще следует садить лесные культуры.

УДК 634.0.23

В.В.БАБИНОК, В.С.РОМАНОВ, Л.И.МУХУРОВ

ВЕРТИКАЛЬНАЯ СТРУКТУРА И ЗАПАСЫ КОРМОВ В СОСНОВЫХ МОЛОДНЯКАХ

В связи с большим количеством создаваемых в Белоруссии сосновых молодняков встает задача определения в них запасов кормов, особенно при высокой численности лося, являющегося основным потребителем зеленых побегов сосны. Лоси при повышенной численности оказывают существенное влияние на рост и продуктивность сосновых культур и естественное возобновление, поэтому определение кормовых ресуров сосновых молодняков необходимо как для охотхозяйственных целей, так и при изучении лесохозяйственного значения лося.

В соответствии с целью исследований закладка пробных площадей (ПП) производилась в молодняках высотой до 5 м в разных условиях произрастания при полноте 0,3—1. На каждой ПП обмерялось в среднем 50 деревьев. Подсчитывалось количество кормовых побегов по слоям от уровня земли: 0÷0,5 м; 0,5÷1 м и т.д. Результаты заносились в специальный бланк. Для определения вертикальной структуры кормов в сосновых молодняках в Воложинском, Негорельском и Осиповичском лесхозах заложены 134 пробные площади, на основании которых производились дальнейшие расчеты и строились модели.

Распределение побегов по высоте дерева в зависимости от характеристик окружающей среды наносилось на график и выравнивалось одной из кривых: тригонометрической, параболой, эллипсом и т.д. Вариация не превышала ± 12 % в случае описания закономерности распределения побегов по высоте синусоидой. Таким образом, базовое уравнение распределения побегов по высоте имеет вид