НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 537.31/.32+549.5+666.654

ВЛИЯНИЕ ДОБАВКИ ЧАСТИЦ МЕДИ НА ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ Са₃Со₄О_{9 + δ}, ПОЛУЧЕННОЙ МЕТОДОМ ДВУХСТАДИЙНОГО СПЕКАНИЯ

© 2022 г. А. И. Клындюк^а, *, Е. А. Чижова^а, Р. С. Латыпов^а, С. В. Шевченко^а, В. М. Кононович^и

^аБелорусский государственный технологический университет, ул. Свердлова, 13А, Минск, 220006 Беларусь

**e-mail: klyndyuk@belstu.by* Поступила в редакцию 07.07.2021 г. После доработки 02.08.2021 г. Принята к публикации 12.08.2021 г.

В результате двухстадийного спекания синтезированы композиционные термоэлектрические материалы на базе слоистого кобальтита кальция $Ca_3Co_4O_{9+\delta}$ с добавками частиц меди, изучена их микроструктура, электротранспортные и термоэлектрические свойства. Установлено, что введение в керамику частиц меди улучшает ее спекаемость при умеренных температурах спекания ($T_{cne\kappa} \le 1273$ K), приводя к снижению пористости и возрастанию электропроводности и фактора мощности образнов, тогда как окисление меди до менее проводящего оксида меди(II) существенно снижает величины электропроводности и фактора мощности керамики, спеченной при повышенных температурах ($T_{cne\kappa} \ge 1373$ K). Наибольшее значение фактора мощности демонстрирует керамика состава $Ca_3Co_4O_{9+\delta} + 3$ мас. % Cu, спеченная при 1273 K (335 мкВт/(м K²) при температуре 1100 K), что в 2.3 раза превышает фактор мощности базового материала $Ca_3Co_4O_{9+\delta}$ с той же термической предысторией (145 мкВт/(м K²) при 1100 K) и более чем в 3 раза превосходит величину фактора мощности керамики $Ca_3Co_4O_{9+\delta}$, синтезированной традиционным твердофазным методом.

Ключевые слова: термоэлектрическая керамика, двухстадийное спекание, Ca₃Co₄O_{9 + δ}, Cu, электропроводность, коэффициент термо-ЭДС, фактор мощности **DOI:** 10.31857/S0044457X22020076

введение

Слоистый кобальтит кальция Са₃Со₄О_{9 + 8} наряду с высокими значениями удельной электропроводности (σ) и коэффициента термо-ЭДС (S) характеризуется низкой теплопроводностью (λ). В отличие от традиционных термоэлектриков на базе селенидов-теллуридов висмута-свинца, он устойчив на воздухе при повышенных температурах и не содержит дорогостоящих и высокотоксичных компонентов. Благодаря этому данное соединение рассматривается в качестве перспективной основы для материалов р-ветвей термоэлектрогенераторов, предназначенных для преобразования тепловой энергии в электрическую при высоких температурах [1]. $Ca_3Co_4O_{9+\delta}$ имеет моноклинную структуру, образованную чередующимися слоями [Ca₂CoO₃] (структура NaCl) и $[CoO_2]$ (структура CdI₂), которые в одном из направлений внутри слоев различаются по периодичности, в связи с чем это соединение относится к "несоразмерным фазам" [2]. Практическое использование синтезируемой традиционным твердофазным методом керамики на базе $Ca_3Co_4O_{9+\delta}$ ограничено ввиду ее высокой пористости и, соответственно, низкой механической прочности и удельной электропроводности.

Эффективным путем синтеза низкопористой керамики на основе $Ca_3Co_4O_{9+\delta}$ с повышенными термоэлектрическими характеристиками является использование специальных методик спекания, таких как горячее прессование [3–5] или искровое плазменное спекание [6–8], однако эти методы требуют применения достаточно редкого и дорогостоящего оборудования.

Альтернативным методом синтеза керамики $Ca_3Co_4O_{9+\delta}$ с пониженной пористостью и, как следствие, повышенной удельной электропроводностью является использование так называемого метода двухстадийного спекания [9–13]. В этом случае на первой стадии образцы спекают при высоких температурах (1373–1473 K), превышающих температуру перитектоидного распада фазы $Ca_3Co_4O_{9+\delta}(T_n = 1211$ K на воздухе [14]), а на второй стадии для восстановления фазового состава керамики ее длительно отжигают на воздухе или в атмосфере кислорода при пониженных температурах (973–1173 K)¹. Одним из способов дополнительного повышения функциональных свойств керамики на основе Ca₃Co₄O_{9 + δ} является модифицирование ее микро- и наночастицами оксидов металлов [15, 16], полупроводников [17], благородных (Ag) [3, 18, 19] и переходных (Fe, Co, Ni, Cu) [20–22] металлов, а также создание в керамике фазовой неоднородности путем ее самолегирования, т.е. использование исходной шихты, имеющей состав, выходящий за пределы области гомогенности соединения Ca₃Co₄O_{9 + δ} [13, 23].

Такое модифицирование керамики позволяет значительно увеличить ее удельную электропроводность [3, 16–19, 22] либо коэффициент термо-ЭДС [13, 23] и в результате повысить такие функциональные (термоэлектрические) характеристики керамики, как фактор мощности ($P = \sigma S^2$, где $P - \phi$ актор мощности, $\sigma - удельная электро$ проводность, <math>S - коэффициент термо-ЭДС) и показатель термоэлектрической добротности ($ZT = \sigma S^2 T / \lambda = PT / \lambda$, где ZT - безразмерный показатель термоэлектрической добротности, илипараметр Иоффе, <math>T - абсолютная температура, $\lambda - теплопроводность).$

Введение в Ca₃Co₄O_{9 + δ} частиц Fe, Co или Ni позволило авторам [20, 21] значительно снизить пористость керамики, однако не привело к существенному улучшению ее электротранспортных и функциональных свойств. Ранее нами было установлено [22], что добавление к керамике на основе Ca₃Co₄O_{9 + δ}, получаемой методом горячего прессования, наночастиц Cu позволяет значительно понизить величину ее пористости и повысить удельную электропроводность и фактор мощности образующихся при этом нанокомпозитов.

В настоящей работе исследовано влияние добавки частиц меди на микроструктуру, электротранспортные (электропроводность и коэффициент термо-ЭДС) и функциональные (фактор мощности) свойства термоэлектрической керамики на основе Ca₃Co₄O_{9+δ}, получаемой методом двухстадийного спекания.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамику $Ca_3Co_4O_{9+\delta}$ синтезировали из $CaCO_3$ (ч. д. а.), Co_3O_4 (ч.), которые смешивали в стехиометрическом соотношении при помощи мельницы Pulverizette 6.0 фирмы Fritsch (300 об/мин, 30 мин, добавка — этанол, материал размольного стакана

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 2 2022

и мелющих шаров – ZrO₂), прессовали в таблетки диаметром 19 мм и высотой 2–3 мм и отжигали на воздухе в течение 12 ч при 1173 К. Для синтеза композитов Ca₃Co₄O_{9+ δ}+ x мас. % Cu (x = 3, 6, 9) отожженные образцы измельчали в агатовой ступке и разделяли на четыре части. К последним трем частям добавляли необходимую навеску частиц меди, после чего подвергали повторному помолу при помощи мельницы и прессовали в бруски размером 5 × 5 × 30 мм, которые затем спекали на воздухе в течение 24 ч при температуре 1173 К и 6 ч при температурах 1273, 1373 и 1473 К соответственно. Спеченные при 1273–1473 К (T_{cnek}) образцы дополнительно отжигали на воздухе при 1173 К в течение 71 ч.

Теоретическую плотность образцов ($\rho_{\rm T}$) рассчитывали по формуле:

$$\rho_{\rm T} = \omega_{349}\rho_{349} + \omega_{\rm Cu}\rho_{\rm Cu},$$

где ω_{349} , ω_{Cu} и ρ_{349} , ρ_{Cu} — массовые доли компонентов керамики и их рентгенографическая плотность, которая для $Ca_3Co_4O_{9+\delta}$ и Cu составляла 4.68 [2] и 8.92 г/см³ соответственно. Величину кажущейся плотности (ρ_{κ}) керамики вычисляли по геометрическим размерам и массе образцов, а пористость полученных материалов находили по уравнению:

$$\Pi = (1 - \rho_{\rm x} / \rho_{\rm T}) \times 100\%.$$

Идентификацию образцов проводили при помощи рентгенофазового анализа (РФА) на дифрактометре Bruker D8 XRD Advance (Cu K_{α} -излучение) и ИК-спектроскопии поглощения на спектрометре Nexus фирмы ThermoNicolet. Микроструктуру образцов изучали методом сканирующей электронной микроскопии (СЭМ) на сканирующем электронном микроскопе JSM-5610 LV. Электропроводность спеченной керамики измеряли на постоянном токе ($I \le 50$ мA) 4-контактным методом (цифровые вольтметры В7-58, В7-53; источник питания Б5-47) на воздухе в интервале температур 300-1100 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 град/мин с погрешностью $\delta(\sigma) \le \pm 5\%$. Коэффициент термо-ЭДС (S) образцов определяли относительно серебра (цифровой вольтметр В7-65/3) на воздухе в интервале температур 300-1100 К с погрешностью $\delta(S) \leq \pm 10\%$ при градиенте температур между горячим и холодным концами образца на уровне 20-25 К. Перед измерениями электрофизических свойств на поверхности образцов формировали Адэлектроды путем вжигания серебряной пасты при 1073 К в течение 15 мин. Для измерения температуры использовали хромель-алюмелевые термопары. Измерения проводили в направлении, перпендикулярном оси прессования (σ_{\perp} , S_{\perp}), а электропроводности - и параллельном оси прессования $(\sigma_{I}, S_{I} \approx S_{I})$. Значения кажущейся энергии актива-

¹ Строго говоря, при нагреве фазы Ca₃Co₄O_{9 + 8} вначале протекает ее перитектоидный распад по реакции П1: Ca₃Co₄O_{9 + 8} \rightarrow Ca₃Co₂O₆ + (Co,Ca)O ($T_{\rm II}$ = 1211 К на воздухе [14]), при последующем нагреве один из продуктов реакции П1 – фаза Ca₃Co₂O₆ – распадается также по перитектоидной реакции П2: Ca₃Co₂O₆ \rightarrow (Ca,Co)O + + (Co,Ca)O ($T_{\rm II}$ = 1312 К на воздухе [14]).

ции электропроводности образцов (E_A) рассчитывали из линейных участков зависимостей $\ln(\sigma T) = fT$).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спекание образца состава $Ca_3Co_4O_{9+\delta} + 9$ мас. % Си при температуре 1473 К привело к его сильному оплавлению и заметному взаимодействию с материалом подложки, вследствие чего исследовать его не удалось.

Как видно из приведенных в табл. 1 данных, пористость полученных материалов закономерно снижается при возрастании температуры спекания, а также содержания меди в образцах (за исключением серии, спеченной при 1473 К), что хорошо согласуется с результатами работ [20, 21], где таким же методом была получена композиционная керамика $Ca_3Co_4O_{9+\delta} + x$ об. % М (М = Co, Ni; x = 3, 6, 9) с пониженной пористостью.

После заключительной стадии синтеза образцы состава Са₃Со₄О_{9+δ}, спеченные при различных температурах, были однофазными (в пределах погрешности РФА) и содержали только фазу слоистого кобальтита кальция [2] (рис. 1а-1г, кривая 1). На рентгеновских дифрактограммах порошков $Ca_3Co_4O_{9+\delta} + x$ мас. % Си помимо рефлексов матричной фазы – Ca₃Co₄O_{9 + δ} – наблюдались рефлексы оксида меди CuO (рис. 1а-1г, кривые 2-4), образовавшегося при окислении металлической меди кислородом воздуха², а для образцов, спеченных при температурах 1273 и 1373 К, - также рефлексы фазы Са₃Со₂О₆, являющейся продуктом перитектоидного распада слоистого кобальтита кальция [14], и оксида кобальта Со₃О₄. С ростом содержания меди в композитах Са₃Со₄О_{9+ δ} + + х мас. % Си интенсивность рефлексов фаз $Ca_3Co_2O_6$ и Co_3O_4 возрастает, а фазы $Ca_3Co_4O_{9+\delta}$ – уменьшается (рис. 16, 1в), при этом в образце $Ca_3Co_4O_{9+\delta}$ + 9 мас. % Cu, спеченном при температурах 1273 и 1373 К, а также в материале состава Са₃Со₄О_{9+ δ} + 6 мас. % Си, спеченном при 1373 К, согласно результатам РФА, фаза Са₃Со₄О_{9 + δ} практически отсутствует. Одной из возможных причин этого может быть затруднение протекания перитектоидной реакции П1 вследствие наличия в образцах частиц примесной фазы - CuO. Наши результаты согласуются с данными работ [20, 21], в которых было найдено, что содержание фазы $Ca_3Co_4O_{9+\delta}$ в композитах $Ca_3Co_4O_{9+\delta}$ + x об. %

Таблица 1. Значения теоретической ($\rho_{\rm T}$, г/см³) и кажущейся плотности ($\rho_{\rm K}$, г/см³), пористости (П, %), параметров электропереноса ($E_{A\perp}$, $E_{A\parallel}$, мэВ) и термоэлектрических характеристик ($\sigma_{1100\perp}$, См/см, $S_{1100\perp}$, мкВ/К, $P_{1100\perp}$, мкВт/(м K²)) композитов Са₃Со₄O_{9 + δ} + х мас. % Сu, спеченных при различных температурах ($T_{{\rm спек}}$ K)

x	ρ _τ	ρ _κ	П	$E_{A,\perp}$	$E_{A\parallel}$	σ _{1100, ⊥}	$S_{1100, \perp}$	$P_{1100, \perp}$
$T_{\text{error}} = 1173 \text{ K}$								
Ω	4 68	2 86	38.9	1117	1112	36.9	200	148
3	4.00	3.03	36.0	02.8	03.6	45.6	179	146
6	1.00	3.00	35.0	01.8	108	54.6	186	180
0	5.02	2 20	226	06.1	111	527	175	161
9	5.05	3.39	32.0 T	90.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52.7	175	101
$I_{\text{CHEK}} = 12/3$ B.								
0	4.68	3.31	29.3	86.4	76.1	43.2	183	145
3	4.80	3.86	19.6	97.7	114	82.2	202	335
6	4.92	4.14	15.9	94.8	108	41.1	188	145
9	5.03	4.26	15.3	96.1	111	53.1	175	162
$T_{\rm enex} = 1373 {\rm K}$								
0	4.68	3.92	16.2	115	92.6	64.8	183	217
3	4.80	4.33	9.8	159	204	12.2	219	58.5
6	4.92	4.46	9.3	308	304	16.7	202	49.8
9	5.03	4.52	10.1	334	362	12.0	170	34.7
$T_{\rm cnex} = 1473 {\rm K}$								
0	4.68	4.04	13.7	95.4	81.9	74.8	200	299
3	4.80	3.48	27.5	159	204	55.1	200	220
6	4.92	3.51	28.7	103	107	62.2	197	241

Со, полученных методом двухстадийного спекания, уменьшается с ростом x, а в композитах $Ca_3Co_4O_{9+\delta} + x$ об. % M (M = Fe, Ni) эта фаза отсутствует.

На ИК-спектрах поглощения порошков состава Ca₃Co₄O_{9 + δ} с различной термической предысторией (рис. 2а) наблюдаются три выраженные полосы поглощения с экстремумами при 561-575 (v₁), 625-630 (v₂) и 729-733 см⁻¹ (v₃), отвечающие, согласно [25], валентным колебаниям связей Со–О (v_1 и v_2) и Са–О (v_3) в структуре фазы Са₃Со₄О_{9+δ}. На ИК-спектрах поглощения композита $Ca_3Co_4O_{9+\delta}$ + 9 мас. % Си помимо полос поглощения матричной фазы (Ca₃Co₄O_{9 + δ}: 565 (ν_1), $630(v_2), 714-721 \text{ см}^{-1}(v_3))$ наблюдаются также дополнительные полосы поглощения с экстремумами при 443-459 (v₄), 541-543 (v₅) и 591 см⁻¹ (v₆), отвечающие валентным колебаниям связей Си-О $(v_4 u v_5)$ в оксиде меди(II) [26], а также валентным колебаниям связей Ca-O (v₆) в структуре фазы $Ca_3Co_2O_6[27].$

Как видно из результатов СЭМ (рис. 3), синтезированная в работе керамика обладает типичной для слоистого кобальтита кальция микрострукту-

² Образующийся при окислении металлической меди (Cu) кислородом воздуха оксид меди(II) на воздухе при температурах выше 1273 К должен восстанавливаться до Cu₂O (куприта) по реакции CuO \rightarrow Cu₂O + 1/2O₂ [24]. В результате длительного отжига керамики на воздухе при T = 1173 К будет протекать обратная реакция, и оксид меди в ее составе должен находиться в виде тенорита (CuO).

Рис. 1. Рентгеновские дифрактограммы порошков композитов состава $Ca_3Co_4O_{9+\delta} + x$ мас.% Cu, спеченных при 1173 (a), 1273 (b), 1373 (b) и 1473 K (г): x = 0 (1), 3 (2), 6 (3) и 9 (4). На дифрактограмме 1 обозначены индексы Миллера фазы $Ca_3Co_4O_{9+\delta}$.

рой и состоит из сильно анизотропных пластин (зерен), размер которых с ростом содержания меди в образцах растет от $\sim 3-7$ мкм для Ca₃Co₄O_{9+ δ} до ~10-15 мкм для композиционного материала $Ca_3Co_4O_{9+\delta} + 9$ мас. % Cu, а толщина составляет ~0.5-1 мкм (рис. 3а-3г). Отсюда следует, что введение в керамику на основе Ca₃Co₄O_{9 + б} частиц меди в совокупности с двухстадийным спеканием позволяет получить более крупнокристаллическую керамику. Интересно, что модификация горячепрессованной керамики Ca₃Co₄O_{9+ 8} наночастицами меди приводит к противоположному результату - уменьшению размеров зерен керамики [22]. Размер пластин керамики увеличивается с ростом температуры се спекания от ~2-5 мкм для образца $Ca_3Co_4O_{9+\delta}$ + 3 мас. % Cu, спеченного

при 1173 К, до ~5–10 мкм для материала этого состава, спеченного при более высоких температурах (1273–1473 К) (рис. 3д–33), причем наиболее окристаллизованными являются зерна керамики, спеченной при температурах 1273 и 1373 К.

Электропроводность образцов Ca₃Co₄O₉₊₈+ x мас. % Cu (x = 6, 9), спеченных при 1373 K, внутри всего изученного интервала температур носит полупроводниковый характер ($\partial \sigma / \partial T > 0$), тогда как для остальных исследованных материалов зависимость $\sigma = fT$) вблизи комнатной температуры имеет слабовыраженный металлический характер ($\partial \sigma / \partial T < 0$), вблизи 400–500 K изменяющийся на полупроводниковый (рис. 4a, 4r, 4ж, 4к), что обусловлено фазовым переходом металл-полупроводник, протекающим в слоистом кобальтите каль-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 2 2022

Рис. 2. ИК-спектры поглощения образцов Ca₃Co₄O_{9 + δ} (а) и Ca₃Co₄O_{9 + δ} + 9 мас. % Cu (б), спеченных при 1173 K (*I*), 1273 (*2*), 1373 (*3*) и 1473 K (*4*).

Рис. 3. Электронные микрофотографии сколов керамики состава $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu, спеченной при 1273 K (x = 0 (a), 3 (б), 6 (в), 9 (г)) и композита $Ca_3Co_4O_{9+\delta} + 3$ мас. % Cu, спеченного при 1173 (д), 1273 (е), 1373 (ж) и 1473 K (з).

ция в этом интервале температур [28]. Увеличение температуры спекания керамики $Ca_3Co_4O_{9+\delta}$ приводит к закономерному росту ее электропроводности, что обусловлено снижением пористости, тогда как зависимость о композитов $Ca_3Co_4O_{9+\delta} +$ + x мас. % Си от их термической предыстории и состава носит сложный характер (рис. 4a, 4r, 4ж, 4к, табл. 1). Электропроводность спеченных при 1173 К образцов $Ca_3Co_4O_{9+\delta} + x$ мас. % Си, а также материала $Ca_3Co_4O_{9+\delta} + 3$ мас. % Си, спеченного при 1273 К (с наибольшим значением проводимости $\sigma_{\perp,1100} = 82.2$ См/см (табл. 1)), выше, чем матричной фазы Ca₃Co₄O_{9 + 8}, что обусловлено улучшением спекаемости модифицированных частицами меди образцов. Остальные композиты значительно уступают по величине о базовой фазе с той же термической предысторией, что обусловлено наличием в их составе низкопроводящих фаз оксида меди(II) (образующегося при окислении металлической меди кислородом воздуха), Ca₃Co₂O₆ и Co₃O₄ [13, 29], причем наименьшей электропроводностью обладает спеченная

Рис. 4. Температурные зависимости удельной электропроводности (а, г, ж, к), коэффициента термо-ЭДС (б, д, з, л) и фактора мощности (в, е, и, м) композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Сu, спеченных при 1173 (а–в), 1273 (г–е), 1373 (ж–и) и 1473 К (к–м) в направлении, параллельном (*I*–4) и перпендикулярном (*I*'–4') оси прессования: x = 0 (*I*, *I*'), 3 (*2*, 2), 6 (*3*, 3'), 9 (*4*, 4'). На врезках даны концентрационные зависимости электропроводности (а, г, ж, к), коэффициента термо-ЭДС (б, д, з, л) и фактора мощности (в, е, и, м) керамики в направлении, перпендикулярном оси прессования: T = 300 (5), 700 (6) и 1100 К (7).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 2 2022

253

при 1373 К керамика $Ca_3Co_4O_{9+\delta} + x$ мас. % Си (рис. 4ж), содержащая наибольшее количество этих фаз.

Известно, что монокристаллы Са₃Со₄О_{9 + 8} характеризуются сильной анизотропией электропроводности, величина которой в плоскости ab (в направлении слоев [CoO₂], σ_{ab}) в сотни раз больше, чем в направлении, перпендикулярном этой плоскости (слоям [СоО₂], σ_c) [30]. Синтезированная нами поликристаллическая керамика $Ca_3Co_4O_{9+\delta} + x$ мас. % Си также характеризуется выраженной анизотропией электропроводности, величина которой в направлении, перпендикулярном оси прессования (σ_1), для образцов, содержащих незначительные количества низкопроводящих фаз (Ca₃Co₂O₆, Co₃O₄, CuO), заметно больше, чем в направлении, параллельном оси прессования (б∥, для материалов, спеченных при 1173 К, на 35-65%) (рис. 4а, 4г, 4ж, 4к). Это связано, вероятно, с частичным текстурированием керамики (выстраиванием зерен фазы $Ca_3Co_4O_{9+\delta}$ в направлении, перпендикулярном оси прессования) [6].

Величина энергии активации электропроводности образцов, рассчитанная в интервале температур 700–1100 К, изменяется в пределах 0.086-0.117 эВ (за исключением композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Си, спеченных при 1373 К, и материала $Ca_3Co_4O_{9+\delta} + 3$ мас. % Си, спеченного при 1473 К, табл. 1), что близко к значениям, приведенным в литературе [13, 20–22, 28] для керамических материалов на основе $Ca_3Co_4O_{9+\delta}$ и указывает на общий для них механизм электропроводности, который определяется переносом заряда в основной фазе — слоистом кобальтите кальция.

Знак коэффициента термо-ЭДС для всех изученных материалов положительный (S > 0), откуда следует, что основными носителями заряда в них являются "дырки", а сами материалы - проводниками р-типа. Величина S монотонно увеличивается с ростом температуры (за исключением композитов Ca₃Co₄O_{9+ δ}+ *x* мас. % Cu, спеченных при 1373 К, для которых зависимость S = f(T) носит экстремальный характер), изменяясь в пределах 120-200 мкВ/К (рис. 46, 4д, 4з, 4л, табл. 1), что характерно для керамики на основе Ca₃Co₄O_{9 + δ} [3-13, 22, 27]. Величина S для композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu, как правило, выше, чем для базовых образцов состава Са₃Со₄О_{9 + б} что обусловлено фазовой неоднородностью композитов [5, 13, 22, 23]. Повышенные значения коэффициента термо-ЭДС для спеченных при 1373 К композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Си и наблюдающийся аномальный ход зависимости S = fT) обусловлены, вероятно, присутствующей в них в значительных количествах фазой Со₃О₄, характеризующейся высокими значениями S и экстремальным ходом температурной зависимости [29].

Значения фактора мощности увеличиваются с ростом температуры и для материалов Са₃Со₄О₉₊₈+ + х мас. % Си, спеченных при 1173 К, при увеличении х (рис. 4в, 4е, 4и, 4м). При этом максимальная величина Р наблюдается для образца состава $Ca_3Co_4O_{9+\delta}$ + 3 мас. % Cu, спеченного при 1273 K, -335 мкВт/(м К²) при температуре 1100 К, что в 2.3 раза больше значения фактора мощности не модифицированной частицами меди керамики Са₃Со₄О_{9 + б}, имеющей ту же термическую предысторию (P_{1, 1100} = 145 мкВт/(м К²)), и в 3.3 раза больше, чем для высокопористой керамики Са₃Со₄О_{9+ δ}, синтезируемой обычным твердофазным способом ($P_{1100} \sim 100 \text{ мкВт/(м K^2)}$ [31, 32]. Высокое значение фактора мощности композиционной керамики $Ca_3Co_4O_{9+8} + 3$ мас. % Cu, спеченной при температуре 1273 К. обусловлено одновременно повышенными значениями ее электропроводности (что обусловлено пониженной пористостью) и коэффициента термо-ЭДС (что, видимо, связано с фазовой неоднородностью материала). По величине Р этому материалу немного уступает керамика состава $Ca_3Co_4O_{9+\delta_7}$ спеченная при 1473 К, для которой значение фактора мощности при температуре 1100 К составляет 299 мкВт/(м K²).

ЗАКЛЮЧЕНИЕ

В результате двухстадийного спекания синтезированы композиционные термоэлектрические материалы на основе Са₃Со₄О_{9 + 6}, модифицированные частицами меди, определен их фазовый состав, изучены микроструктура, электротранспортные (электропроводность, коэффициент термо-ЭДС) и термоэлектрические свойства (фактор мощности). Проанализировано влияние температуры спекания (термической предыстории) и добавки частиц меди на физико-химические и функциональные свойства керамики. Установлено, что введение в керамику частиц меди улучшает ее спекаемость при умеренных температурах $(T_{chek} \le 1273 \text{ K})$, в результате чего снижается пористость образцов и возрастает их электропроводность и фактор мощности. В то же время окисление меди до менее проводящего оксида меди(II) приводит к снижению величин электропроводности и фактора мощности керамики, спеченной при повышенных температурах (*T*_{спек} ≥ 1373 К). Максимальное значение фактора мощности наблюдается для материала состава Са₃Co₄O_{9 + δ} + +3 мас. % Си, спеченного при 1273 К (335 мкВт/(м К²) при 1100 К), что в 2.3 раза больше, чем для не модифицированного частицами меди образца Ca₃Co₄O_{9 + δ} с той же термической

предысторией (145 мкВт/(м K^2) при 1100 K), в 3.3 раза выше величины фактора мощности керамики Ca₃Co₄O_{9+δ}, полученной обычным твердофазным методом, и на 10% больше, чем для немодифицированной керамики Ca₃Co₄O_{9+δ}, спеченной при 1473 K (299 мкВт/(м K^2) при 1100 K). Таким образом, модификация Ca₃Co₄O_{9+δ} частицами меди позволяет получить термоэлектрическую керамику с улучшенными характеристиками, используя метод двухстадийного спекания с пониженной (на 200 K) по сравнению с обычно используемой температурой спекания (1273 K (с протеканием одного перитектоидного распада по реакции П1) вместо 1473 K (с протеканием двух перитектодиных распадов по реакциям П1, П2)).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке ГПНИ "Физическое материаловедение, новые материалы и технологии" (подпрограмма "Материаловедение и технологии материалов", задание 1.55 "Разработка и исследование композиционных термоэлектриков на основе слоистого кобальтита кальция").

КОНФЛИКТ ИНТЕРЕСОВ

Авторы сообщают об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Oxide Thermoelectrics. Research Signpost / Ed. Koumoto K., Terasaki I., Murayama N. Trivandrum: Research Signpost, 2002. 255 p.
- Masset A.C., Michel C., Maignan A. et al. // Phys. Rev. B. 2000. V. 62. № 1. P. 166. https://doi.org/10.1103/PhysRevB.62.166
- 3. Xiang P.-H., Kinemuchi Y., Kaga H. et al. // J. Alloys Compd. 2008. V. 454. P. 364. https://doi.org/10.1016/j.jallcom.2006.12.102
- 4. *Katsuyama S., Takiguchi Y., Ito M.* // J. Mater. Sci. 2008. V. 43. № 10. P. 3553. https://doi.org/10.1007/s10853-008-2561-x
- Клындюк А.И., Мацукевич И.В., Янек М. и др. // Журн. прикл. химии. 2020. Т. 93. Вып. 8. С. 1091. [Klyndyuk A.I., Matsukevich I.V., Janek M. et al. // Russ. J. Appl. Chem. 2020. V. 93. Iss. 8. Р. 1126. https://doi.org/10.1134/S1070427220080030] https://doi.org/10.31857/S0044461820080034
- Wu N.Y., Holgate T.C., Nong N.V. et al. // J. Eur. Ceram. Soc. 2014. V. 34. P. 925. https://doi.org/10.1016/j.jeurceramsoc.2013.10.022
- 7. *Królicka A.K., Piersa M., Mirowska A. et al.* // Ceram. Int. 2018. V. 44. № 12. P. 13736. https://doi.org/10.1016/j.ceramint.2018.04.215
- 8. *Kanas N., Singh S.P., Rotan M. et al.* // J. Eur. Ceram. Soc. 2018. V. 38. № 4. P. 1592. https://doi.org/10.1016/j.jeurceramsoc.2017.11.011

9. Madre M.A., Costa F.M., Ferreira N.M. et al. // J. Eur. Ceram. Soc. 2013. V. 33. № 10. P. 1747. https://doi.org/10.1016/j.jeurceramsoc.2013.01.029

 Kang M.-G., Cho K.-H., Kim J.-S. et al. // Acta Mater. 2014. V. 73. P. 251. https://doi.org//10.1016/j.actamat.2014.04.008

 Schulz T., Töpfer J. // J. Alloys Compd. 2016. V. 659. P. 122. https://doi.org/10.1016/j.jallcom.2015.11.001

- Shi Z., Xu J., Zhu J. et al. // J. Mater. Sci.: Mater. Electron. 2020. V. 31. P. 2938. https://doi.org/10.1007/s10854-019-02838-0
- Клындюк А.И., Чижова Е.А., Тугова Е.А. и др. // Физика и химия стекла. 2020. Т. 46. № 6. С. 605. [К1упdyuk A.I., Chizhova E.A., Tugova E.A. et al. // Glass Phys. Chem. 2020. V. 46. № 6. Р. 548. https://doi.org/ 10.1134/S1087659620060127] https://doi.org/10.31857/S0132665120060128
- Sedmidubsky D., Jakes V., Jankovsky O. et al. // J. Solid State Chem. 2012. V. 194. P. 199. https://doi.org/10.1016/j.jssc.2012.05.014
- Delorme F, Diaz-Chao P, Guilmeau E. et al. // Ceram. Int. 2015. V. 41. № 8. P. 10038. https://doi.org/10.1016/jceramint.2015.04.091
- 16. Gupta R.K., Sharma R., Mahapatro A.K. et al. // Physica B. 2016. V. 483. P. 48. https://doi.org/10.1016/j.physb.2015.12.028
- Amaveda H., Mora M., Dura O.J. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 1. P. 402. https://doi.org/10.1016/j.jeurceramsoc.2020.08.024
- Kahraman F, Madre M.A., Rasekh Sh. et al. // J. Eur. Ceram. Soc. 2015. V. 35. P. 3835. https://doi.org/10.1016/j.jeyrceramsoc.2015.05.029
- 19. Shi Z, Gao F, Xu J. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 3086. https://doi.org/10.1016/j.jeurceramsoc.2019.04.004
- 20. Constantinescu G., Sarabando A.R., Rasekh Sh. et al. // Materials. 2020. V. 13. P. 1060. https://doi.org/10.3390/ma13051060
- 21. Constantinescu G., Mikhalev S.M., Lisenkov A.D. et al. // Materials. 2021. V. 14. P. 980. https://doi.org/10.3390/ma14040980
- Клындюк А.И., Мацукевич И.В., Янек М. и др. // Неорган. материалы. 2020. Т. 56. № 11. С. 11198. [К/упdyuk A.I., Matsukevich I.V., Janek M. et al. // Inorg. Mater. 2020. V. 56. № 11. Р. 1263. https://doi.org/10.1134/S0020168520110059] https://doi.org/10.31857/S0002337X20110056
- 23. Zhou X.-D., Pederson L.R., Thomsen E. et al. // Electrochem. Solid-State Lett. 2009. V. 12. № 2. P. F1. https://doi.org/10.1149/1.3039948
- 24. Schramm L., Behr G., Löser W. et al. // J. Phase Equilibria Diffusion. 2005. V. 26. № 6. P. 605. https://doi.org/10.1361/154770305X74421
- Zhang Y., Zhang J. // J. Mater. Process. Technol. 2008.
 V. 208. № 1–3. P. 70. https://doi.org/10.1016/j jmatprotec.2007.12.093
- 26. Zhang Y.C., Tang J.Y., Wang G.L. et al. // J. Cryst. Growth. 2006. V. 294. P. 278. https://doi.org/10.1016/j.jcrysgro.2006.06.038

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 2 2022

- 27. Lu D., Chen G., Pei J. et al. // J. Rare Earths. 2008.
 V. 26. № 2. P. 168. https://doi.org/10.1016/S1002-0721(08)60059-9
- Lin Y.-H., Lan J., Shen Z. et al. // Appl. Phys. Lett. 2009. V. 94. P. 072107. https://doi.org/10.1063/1.308687
- 29. Клындюк А.И., Красуцкая Н.С., Чижова Е.А. // Физика и химия стекла. 2018. Т. 44. № 2. С. 128. [Klyndyuk A.I., Krasutskaya N.S., Chizhova E.A. // Glass Phys. Chem. 2018. V. 44. № 2. P. 100. htpps://doi.org/10.1134/S1087659618020086]
- Bresh S., Mieller B., Schoenauer-Kamin D. et al. // J. Am. Ceram. Soc. 2020. V. 104. № 2. P. 917. https://doi.org/10.1111/jace.17541
- 31. *Tahashi M., Ogawa K., Takahashi M. et al.* // J. Ceram. Soc. Jpn. 2013. V. 121. № 5. P. 444.
- 32. Мацукевич И.В., Клындюк А.И., Тугова Е.А. и др. // Журн. прикл. химии. 2015. Т. 88. Вып. 8. С. 1117. [*Matsukevich I.V., Klyndyuk A.I., Tugova E.A. et al.* // Russ. J. Appl. Chem. 2015. V. 88. № 8. Р. 1241. https://doi.org/10.1134/S1070427215080030]