УДК 674.023

А.В. Блохин, доц., канд. техн. наук; Адель Рашид; С.Е. Бельский, доц., канд. техн. наук.; М.Н. Пищов, доц., канд. техн. наук (БГТУ, г. Минск)

ПОВЫШЕНИЕ ХАРАКТЕРИСТИК УСТАЛОСТИ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ КОМБИНИРОВАННОЙ ОБРАБОТКОЙ

Введение. Сегодня сплавы на основе являются вторыми по применяемости, уступая только сплавам на основе железа. По данным Международного института алюминия [1] производство первичного алюминия сегодня достигло десятков млн. т в год и продолжает неуклонно расти.

В мировой практике в настоящее время активно используют два процесса получения алюминия:

- первичного алюминия из глинозема методом электролиза;
- вторичного из лома и отходов производства путем их переплавки. Главным достоинством первого процесса является высокое качество продукции, главным недостатком высокий расход электро-энергии. Несмотря на то, что в течение 20-го столетия энергозатраты на электролиз снизились в среднем с 50 до 14 кВт·ч/кг алюминия, их доля в себестоимости продукции составляет 25-30 %. Кроме того, примерно 15 % себестоимости включают затраты на углеродные аноды.

Серьезным недостатком классической технологии получения первичного алюминия является также выделение больших количеств угарного газа и двуокиси углерода в результате сгорания углеродного анода. В мире постоянно ведутся работы по устранению отмеченных недостатков. Так, по данным корпорации «РУСАЛ» [2], наиболее перспективной видется технология, предусматривающая применение инертного анода из алюминиевой бронзы. Применение таких электродов позволит эффективнее использовать электроэнергию и улучшить экологическую обстановку за счет полного исключения выбросов парниковых газов и полиароматических углеводородов (в производстве по классической технологии на одну тонну алюминия расходуется до 500 кг угольных анодов). Ожидается, что применение такого подхода позволят снизить расход энергии до 9-10 кВт·ч/кг.

В мире наиболее крупными потребителями алюминия и, соответственно, поставщиками его скрапа, являются: транспорт, строительная и пищевая промышленность, машиностроение. Широкое применение алюминия и сплавов на его основе в транспортном машино-

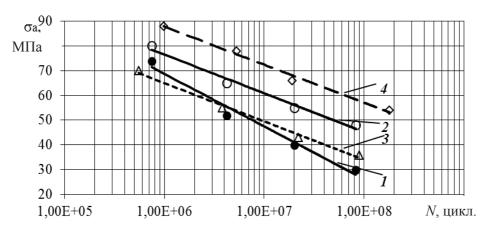
строении определяется высокими показателями удельной прочности, повышенной коррозионной стойкостью, а также способностью к демпфированию колебаний и большому поглощению энергии. Особенно важны эти показатели при производстве легковых автомобилей. В связи с этим темпы использования изделий из алюминиевых сплавов в легковых автомобилях имеют устойчивую тенденцию к росту.

В связи с тем, что используемые и перспективные технологии электролиза энергозатратны и вносят существенный вклад в себестоимость производства первичного алюминия, а соответственно и сплавов на его основе, весьма перспективным является использование вторичного алюминия. Энергозатраты на получение из него сплавов при плавке в электропечах составляют около 0,4 кВт·ч. [3], что в 35 раз ниже, чем при производстве первичного алюминия методом электролиза.

Известно, что основной проблемой рециклинга является более низкое качество сплавов по сравнению с полученными из первичного алюминия. Объясняется это тем, что поступающий на переработку металл в значительной степени загрязнен посторонними материалами — пластиком, маслами, деталями из других конструкционных материалов. В связи с этим, вторичные сплавы алюминия содержат большое количество интерметаллидных фаз, неметаллических включений, растворенных газов, отличаются гетерогенностью структуры и поэтому значительно уступают по служебным и механическим свойствам первичным.

Основными технологическими процессами, позволяющими достичь высокого качества вторичных алюминиевых сплавов, являются [4]:

- сортировка скрапа, обеспечивающая получение требуемого состава при минимуме нежелательных примесей (железа, магния и др.);
 - рафинирование, легирование и модифицирование сплавов;
- плавка в дуговых печах постоянного тока, дающая возможность отказаться от процессов рафинирования и модифицирования, в три раза снизить затраты на переплав по сравнению с газовыми печами.


Для повышения эксплуатационных характеристик деталей, изготовленных из вторичных алюминиевых сплавов можно использовать импульсную тепловую обработку их поверхностей при помощи промышленных лазерных установок. Так, авторы [5] показали, что применение такой обработки обеспечивает 2-3 кратное повышение микротвердости поверхности образцов. Подобная обработка, однако, приводит к снижению характеристик усталости [6]. Поэтому актуальной задачей является повышение характеристик усталости дополнительной

финишной термической и механической обработкой. Целью данной работы было исследование влияния импульсной тепловой обработки на характеристики усталости образцов, изготовленных из вторичных алюминиевых сплавов.

Основная часть. Исследования проводились на образцах из сплава по химическому составу подобному на АК9М3 со следующим химическим составом: 9,65-9,93 % Si, 2,82-3,12 % Cu. 0,024-0,071 % Мп, 0,053-0,11 Мg, до 1,5%Fe, остальное — Al. Образцы представляли собой плоские балочки с прямоугольным поперечным сечением (2×6 мм).

Поверхностное упрочнение методом тепловой импульсной обработки проводилось по рекомендациям специалистов Запорожского национального технического университета (Украина) на импульсном лазере «Квант-12» по следующим режимам: $\tau = 4$ мс, $\lambda = 0,6943$ мкм, при этом перекрытие трасс оплавления на обрабатываемой поверхности состояло 25-35%. Оплавление плоских образцов толщиной 2 мм производилось с двух сторон. Толщина оплавленного слоя составляла в среднем около 200 \pm 50 мкм. Также при разливке сплав был обработан модификатором [7].

Усталостные характеристики образцов после различных видов обработки определялись на оборудовании, позволяющем производить ускоренное прогнозирование характеристик усталости с использованием высоких частот нагружения (до 18±0,5 кГц). В результате было установлено, что снятие части оплавленного слоя полированием позволило существенно улучшить характеристики усталости образцов подвергнутых тепловому воздействию (рисунок 1).

1 — сплав, полученный без использования модификатора [7], 2 — сплав, полученный с использованием модификатора [7],3 — после импульсной тепловой обработки; 4 — после импульсной тепловой обработки, полирования и старения

Рисунок 1 – Усталостные кривые 50% вероятности разрушения образцов из сплава АК9М2 (1,5% Fe)

Заключение. Проведение комплексной обработки, включающей использование на стадии переплавки модификатора [7], импульсную тепловую обработку с последующим старением и полированием, существенно повышает сопротивление разрушению под действием циклических нагрузок. Наилучшие результаты достигнуты при содержании железа в сплаве около 1-1,5%, что может быть объяснено трансформацией железосодержащих фаз при лазерной обработке.

Таким образом, предложенная комплексная обработка алюминиевых сплавов, включающая, кроме лазерной закалки, старение и финишное полирование, является перспективным для вторичных алюминиевых сплавов и обеспечивает возможность использования таких материалов для изготовления деталей, работающих в условиях циклического нагружения, а также интенсивного изнашивания.

ЛИТЕРАТУРА

- 1. International Aluminium Institute [Electronic resource] Mode of access: https://stats.world-aluminium.org/iai/stats_new/index.asp. Date of access: 12.12.2021.
- 2. РУСАЛ [Электронный ресурс] Режим доступа: http://www.rusal.ru/development/innovations/inert_anode.aspx. Дата доступа 14.05.2011.
- 3. Макаров, Г.С. Российский рынок вторичного алюминия / Г.С. Макаров // Рынок вторичных металлов. 2004. № 5/25. С.70-73.
- 4. Рязанов, С.Г. Тенденции и проблемы использования вторичных алюминиевых сплавов / С.Г. Рязанов, А.А. Митяев, И.П. Волчок // Nauka i Technologia: Труды VI конференции. Zakopane. 2003. С. 99–102.
- 5. Гиржон В.В., Танцюра И.В., Волчок И.П., Широкобокова Н.В. Влияние лазерной обработки на структуру и свойства поверхностных слоев силуминов //Физика и химия обработки материалов. 2008. № 1. C.50-54.
- 6. Царук, Ф.Ф. Влияние содержания железа и лазерной обработки на высокочастотные усталостные свойства сплава AK8M3 / С.Е.Бельский // Труды БГТУ. Сер. II, Лесная и деревообраб. пром-сть. 2008. Вып. XVIII. С. 10-213.