Г.Я. Климчик, доц., канд. с-х. наук; О.Г. Бельчина, ассист. (БГТУ, г. Минск)

ОЦЕНКА КОСВЕННОГО УЩЕРБА ОТ ЛЕСНЫХ ПОЖАРОВ В СОСНЯКАХ

В современных условиях глобального потепления климата и урбанизации населения, развития дорожной сети, технической оснащенности населения вероятность возникновения лесных пожаров будет только возрастать. Основная причина возгораний — несоблюдение правил пожарной безопасности во время работы и отдыха в лесу. Большинство лесных пожаров приходится на ранневесенний и летний периоды, что связано с массовыми посещениями населением лесов в весенний период и в период созревания и сбора грибов и ягод.

В настоящее время во всех странах мира большое внимание уделяется изучению депонирования углерода, азота и зольных элементов в напочвенном покрове, что обусловлено изменением газового состава атмосферного воздуха в связи с хозяйственной деятельностью, лесными пожарами и влиянием других факторов.

В лесах Беларуси лесные пожары, как правило, носят характер стихийного бедствия и представляет собой один из основных путей быстрого возвращения углерода, азота зольных элементов из экосистемы в атмосферу или в недоступные для этой экосистемы почвенные горизонты.

Учитывая легкий гранулометрический состав лесных почв сосняков в нижней части профиля и почвообразующих пород, следует, что зольные элементы будут мигрировать с дождевыми и грунтовыми водами за пределы почвенного профиля, что вызывает снижение плодородия почвы. Это приводит к экономическим и экологическим потерям после прохождения низовых пожаров в сосновых насаждениях, которые значительно превосходят, учитываемый в настоящее время прямой ущерб. Та сумма потерь, которая является основанием для предъявления виновному судебного иска, не должна вызывать сомнения. Поэтому в нее кроме прямых потерь можно, на наш взгляд, включить и косвенные потери, естественно-экономические показатели которых могут быть учтены и рассчитаны с обеспечением юридически достаточно уровня точности.

С другой стороны, методика определения комплексных экологических потерь от низовых лесных пожаров должна соответствовать следующим научно-техническим и прикладным требованиям:

1) Результаты вычисления комплексных потерь должны быть

точными, адекватно восприниматься, и для их оценки должно использоваться минимальное количество исходной информации;

- 2) Отличаться простотой практического использования штатными работниками по охране леса, оперативностью и однозначностью определения, как прямых, так и косвенных потерь от лесных пожаров;
- 3) Обеспечить объективную оценку потерь как от одного конкретного пожара, так и от их любой совокупности.

На основании ранее полученных нами данных [1–4] можно прогнозировать потери органического вещества, азота и других жизненно необходимых растениям элементов, использовать полученные данные для оценки косвенного ущерба, причиняемого лесными пожарами и пока не входящего в статьи ущерба, учитываемого после прохождения низовых пожаров разной интенсивности.

С учетом весовых показателей массы ярусов живого напочвенного покрова и лесной подстилки содержание в них углерода, азота и зольных элементов нами определены потери перечисленных элементов при низовых пожарах различной интенсивности и разработаны шкалы (таблицы 1, 2, 3).

Таблица 1 – Запасы лесной подстилки в зависимости от мощности горизонта

Мощность, см	Запас, кг/м ²	Средний запас, т/га		
1–2	1,0–1,6	13,0		
3–5	3,1–5,3	42,0		
5–15	6,2–10,3	82,5		
>15	10,5–30,0	402,5		

 Таблица 2 – Биомасса сухого вещества в подросте и подлеске лесного насаждения

Подрост	Количество,	Биомасса сухого	Содержание угле-	
	тыс. шт./га	вещества, т/га	рода, тС/га	
Очень редкий	1,0	до 0,5	0,5	
Редкий	1,0	0,6–1,7	1,15	
Средний	1,5	1,5–7,6	4,55	
Густой	2,0	3,8–22,6	13,2	
Очень густой	>13	15,5–81	47,25	

В соответствии с Киотским Протоколом и Рамочной Конвенцией ООН по изменениям климата (в т. ч. и в отношении Беларуси) появился глобальный рынок торговли квотами на сокращение эмиссии парниковых газов.

Согласно обозначенным соглашениям, стоимости квотированной тонны выбросов CO_2 может рассматриваться как стоимость потерь углерода при низовых пожарах. На современном этапе для стран с переходной экономикой (в т. ч. и для Беларуси) предложенная стоимость составляет 3–4 U\$D/т, т.е. 7.8 - 10.4 Br/т при курсе 2.6 Br/U\$D.

Килограмм азота в эквиваленте стоит около 2,3 Вг/кг. Зональные элементы (в зависимости от состава P, K, Ca, Mg) могут быть оценены в диапазоне до 3,3 Вг/кг.

Таблица 3 – Содержание углерода и элементов питания в сосновых насаждениях

Компоненты лесной эк	Macca	Содержание элементов питания, кг/га					
	сухая,	C,	N,	P,	K,	Ca	Mg
	кг/га	%	%	$M\Gamma/K\Gamma$	$M\Gamma/K\Gamma$	$M\Gamma/K\Gamma$	$M\Gamma/K\Gamma$
Лесная подстилка		42,9	1,10	9,03	18,0	37,57	8,39
ЖНП		49,8	2,60	11,23	5,0	75,60	8,74
Подлесок		50,0	1,40	0,05	0,14	0,15	0,03
Подрост (С.Е)		50,0	1,12	0,38	2,14	3,31	0,44

В тоже время, современные методики и инструкции по определению потерь от лесных пожаров не позволяют определить комплексные потери.

Для полноценного использования планируемого подхода необходимо создание многоуровневой и точной базы данных о потерях каждого из элементов в зависимости от таксационных характеристик насаждений, ТУМ и интенсивности пожара.

ЛИТЕРАТУРА

- 1. Рихтер, И.Э. Депонирование углерода в напочвенном покрове сосновых насаждений / И.Э. Рихтер, О.В. Бахур, Г.Я Климчик. // Труды БГТУ. Сер. І. Лесное хоз-во. 2006. Вып. XIV. С. 130–131.
- 2. Климчик, Г.Я., Оценка косвенного вреда от низовых пожаров разной интенсивности / И.Э. Рихтер, О.В. Бахур, П.В. Шалимо // Труды БГТУ. Сер. І. Лесное хоз-во. 2009. Вып. XVII. С. 108–110.
- 3. Рихтер, И.Э. Влияние низового пожара разной интенсивности на текущий прирост, потери азота и зольных элементов в сосняке мшистом/ И.Э. Рихтер, О.В. Бахур, Г.Я. Климчик // Труды БГТУ. Сер. І. Лесное хоз-во. 2006. Вып. XIV. С. 113–115.
- 4. Влияние лесных пожаров на лесные биогеоценозы / Г.Я. Климчик, И.Э. Рихтер, П.В. Шалимо. Мн.: Вассамедиа, 2009.—40 с.