Б.Б. Туракулов, А.У. Эркаев, Ф.Б. Чавлиева, А.Н. Бобокулов, Б.Х. Кучаров (ТХТИ, г. Ташкент); Л.С. Ещенко (БГТУ, г. Минск)

## ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ГИДРОКСИДА КАЛИЯ НА ОСНОВЕ АНАЛИЗА ДИАГРАММЫ РАСТВОРИМОСТИ СИСТЕМЫ С2H5OH- KOH-H2O

Из литературных данных известно, что растворимость КОН в этиловом спирте при  $18\text{-}20^{\circ}\text{C}$  составляет 37г/100г. Это показывает, что гидроксид калия можно экстрагировать из сложных водных солевых систем, состоящих из  $\text{Ca}(\text{OH})_2$ ,  $\text{CaCO}_3$ ,  $\text{K}_2\text{CO}_3$ , поскольку их растворимость в растворах этилового спирта при 60-97  $^{0}\text{C}$  не превышает 0.03-0.05%.

Процесс растворения гидроксида калия в этиловом спирте протекает по обратимой реакции:

$$C_2H_5OH+KOH$$
  $C_2H_5OK+H_2O$ 

Простой калиевый эфир коричневого цвета является неустойчивым, который при нагревании в водном растворе разлагается с образованием исходных компонентов.

Анализ диаграммы растворимости системы С2Н5ОН- КОН-Н2О, являющейся физико — химической основой получения гидроксида калия, позвалим установить оптимальные технологические параметры процесса, обеспечивающие максимальный выход продукта. Установлено соотношение виды и спирта, при котором в жидкой фазе наблюдается максимальная растворимость гидроксида калия.

Определены реологические свойства и показатели светопреломления образующихся жидких фаз в зависимости от технологических параметров.

В наших исследованиях растворимость системы C2H5OH-KOH-H2O, являющейся физико — химической основой получения КОН, изучали в изотермических условиях в герметически закрытых фторопластовых реакторах при избытке твердофазного гидроксида калия в атмосфере газообразного азота.

На основании литературных и экспериментальных данных были построены политермы растворимости системы  $C_2H_5OH$ -KOH- $H_2O$  (рис.), которые показали образование двух слоев (нижний и верхний) при повышении содержания воды.

С повышением температуры содержание КОН в нижнем слое повышается до 31,2-63,0 %, а содержание спирта снижается до 0,9-9.8%.

Таблица – Влияние технологических параметров процесса экстракции на выход гидроксида калия

|  | No॒ | Норма<br>известко-<br>вого<br>молока,<br>% | Температура конверсии, °C | Соотношение |      |   | Про-<br>долж.<br>кон-<br>версии,<br>мин | Соот-<br>нощение<br>пульпа:<br>спирт | Про-<br>долж.<br>экстрак-<br>ции,<br>мин | Скорость<br>фильтрации,<br>кг/м²·ч |        | Влаж.     | - Ar-  | кон, | Выход               |
|--|-----|--------------------------------------------|---------------------------|-------------|------|---|-----------------------------------------|--------------------------------------|------------------------------------------|------------------------------------|--------|-----------|--------|------|---------------------|
|  |     |                                            |                           |             |      |   |                                         |                                      |                                          | Т/Ф                                | Ж/Ф    | т/ф,<br>% | Т:Ж    | %    | K <sub>2</sub> O, % |
|  | 1.  | 100                                        | 100                       | 1,85        | 1,85 | 1 | 60                                      | 1:2                                  | 15                                       | 272,7                              | 1263,2 | 9,62      | 1:4,95 | 32,6 | 55,8                |
|  | 2.  | 110                                        | 100                       | 2           | 2    | 1 | 60                                      | 1:2                                  | 15                                       | 272,9                              | 1194,2 | 10,1      | 1:3,3  | 41,3 | 56,6                |
|  | 3.  | 110                                        | 100                       | 2           | 2    | 1 | 120                                     | 1:2                                  | 15                                       | 252,2                              | 1214,5 | 9,91      | 1:5,6  | 40,6 | 58,8                |
|  | 4.  | 110                                        | 100                       | 2           | 2    | 1 | 180                                     | 1:2                                  | 15                                       | 267,7                              | 1034,4 | 9,71      | 1:4,96 | 46,5 | 51,4                |
|  | 5.  | 110                                        | 100                       | 3           | 2    | 1 | 120                                     | 1:2                                  | 15                                       | 283                                | 1751,4 | 9,57      | 1:6,95 | 33,8 | 54,0                |
|  | 6.  | 110                                        | 100                       | 2           | 2    | 1 | 120                                     | 1:1,5                                | 15                                       | 328,5                              | 1259,7 | 10,3      | 1:3,2  | 45,2 | 60,3                |
|  | 7.  | 110                                        | 100                       | 2           | 2    | 1 | 120                                     | 1:1                                  | 15                                       | 332,3                              | 1092,6 | 9,94      | 1:2,6  | 49,1 | 62,5                |
|  | 8.  | 110                                        | 70                        | 2           | 2    | 1 | 120                                     | 1:1,5                                | 15                                       | 355,8                              | 1064,7 | 10        | 1:3,44 | 39,8 | 48,9                |
|  | 9.  | 110                                        | 85                        | 2           | 2    | 1 | 120                                     | 1:1,5                                | 15                                       | 355,1                              | 1151,9 | 9,98      | 1:3,4  | 42,5 | 53,3                |
|  | 10. | 110                                        | 100                       | 2           | 2    | 1 | 120                                     | 1:1,5                                | 5                                        | 374,2                              | 1093,7 | 9,5       | 1:3,33 | 38,4 | 50,5                |
|  | 11. | 110                                        | 100                       | 2           | 2    | 1 | 120                                     | 1:1,5                                | 45                                       | 377                                | 1127   | 9,2       | 1:3,4  | 39,2 | 55,7                |
|  |     |                                            |                           |             |      |   |                                         |                                      |                                          |                                    |        |           |        |      |                     |

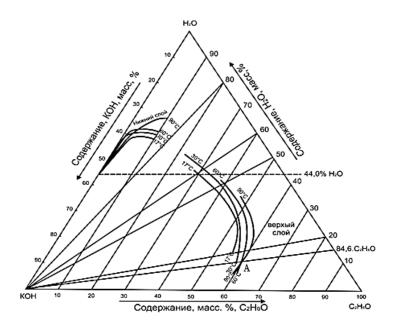



Рисунок – Политерма системы С2Н5ОН-КОН-Н2О

Содержание гидроксида калия и этилового спирта в нижнем слое колеблется в интервалах 31,20-63,55 и 0,90-10,13%, соответственно. В верхнем слое эти показатели составили 18,50-31,08 и 21,60-60,50% соответственно.

Температура влияет на состав верхнего слоя по-другому, чем в нижнем слое, с повышением которой содержание КОН и этилового спирта увеличивается до 35,08 и 60,40% соответственно при  $90^{0}$ С, тогда как при  $17^{0}$ С до 30,0 и 45,60%. Необходимо отметить, что при повышении концентрации используемого водного раствора этилового спирта более 80% влияние температуры нивелируется. Кривые изотермы растворимости при температурах60 и  $80^{\circ}$ С пересекаются в фигуративной точке A, при концентрации спирта  $89^{0}$ С.

Таким образом, установлено, что при соотношения  $H_2O$ :спирт=20-1:80-99 в жидкой фазе наблюдается максимальная растворимость гидроксида калия в интервалах температуры 60-80°C, при которой жидкая фаза после отделения твердой фазы объединяется с чистым гидроксидам калия после ректификации этилового спирта.

## ЛИТЕРАТУРА

- 1. Туракулов Б.Б., Кучаров Б.Х., Эркаев А.У., Тоиров З.К., Реймов А.М. Усовершенствование производства гидроксида калия известковым способом // UNIVERSUM: Технические науки. -2017. -№ 10(43).
- 2. Патент RU 2064432 C 01 D 1/04. Способ получения чистого гидроксида калия / Канель М.З., Коноплев Е.В., Шестеркин И.А. и др. Заявл. 02.09. 1992; опубл. 27.07.1996.