Н. В. Черная, доцент; В. Л. Колесников, профессор

КОЛЛОИДНО-ХИМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ ПРИ КАНИФОЛЬНОЙ ПРОКЛЕЙКЕ БУМАГИ И КАРТОНА

The character of colloidal-chemical interactions of components while rosin sizing of paper and cardboard depends on structure of disperse phase of hydrodispersion of the modified rosin and the contents of aluminum hydroxocombinations $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ and $Al(H_2O)_4(OH)_2^{-+}$ in microheterogeneous system.

Известно [1], что для придания бумаге и картону гидрофобных свойств в волокнистую суспензию последовательно дозируют гидродисперсии модифицированной канифоли (ГМК) и раствор электролита, содержащий гидроксосоединения алюминия (ГСА). При этом структура дисперсной фазы ГМК зависит от способов модификации смоляных кислот канифоли, степени их нейтрализации и условий стабилизации, а качественное и количественное распределение ГСА в растворе электролита зависит от его рН [2]. Поэтому коллоидно-химические взаимодействия, протекающие между дисперсной фазой ГМК и ГСА, влияют на структуру образовавшихся коагулюмов и степень их агрегирования.

Полученные осадки, как установлено нами [3, 4], являются разновеликими и крупнодисперсными. Это, по нашему мнению, является основной причиной того, что процесс канифольной проклейки бумаги и картона протекает в режиме гомокоагуляции. Особенно заметно это проявляется при коллоидно-химических фазы ГМК с взаимодействиях дисперсной гидроксосоединениями алюминия Al(OH)₆³ $Al(\dot{H}_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{+}$. Характер коагуляционного процесса зависит не только от содержания в микрогетерогенной системе электролита (R_{20}) , но и от качественного и количественного распределения в нем ГСА ($R_{\Gamma CA}$). При этом на дисперсность образовавшихся осадков влияют как коллоидно-химические свойства ГМК, так и содержание в микрогетерогенной системе ГСА. В то же время степень агрегирования коагулюмов зависит от их структуры и свойств.

Однако управление процессами коллоиднохимического взаимодействия компонентов при канифольной проклейке бумаги и картона позволяет обеспечить пептизацию осадков и, тем самым, перевести этот процесс из традиционного режима гомокоагуляции к режиму гетероадагуляции.

Отсутствие в литературе информации о коллоидно-химических взаимодействиях, протекающих между дисперсной фазой ГМК и гидроксосоединениями алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{-}$, при канифольной проклейке бумаги и картона обусловливает актуальность настоящей работы с научной и практической точек зрения.

Цель исследований – изучение коллоиднохимических взаимодействий в микрогетерогенной системе «дисперсная фаза ГМК – гидроксосоединения алюминия» на основе установления зависимостей влияния $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{+}$ на структуру и свойства осадков и полученных после их дезагрегирования пептизированных частиц.

Для достижения поставленной цели нами исследовано влияние гидроксосоединений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{+}$, взаимодействующих с дисперсной фазой различных ГМК, на структуру и свойства коагулюмов, образовавших осадки, и пептизированных частиц, полученных в результате дезагрегирования осадков.

Предварительно проведенные нами исследования [3, 4] свидетельствуют о том, что после добавления к ГМК гидроксосоединений алюминия происходят следующие процессы: а) в первой области быстрой коагуляции ГМК образуются разновеликие и крупнодисперсные осадки, способные пептизироваться; б) в области пептизации осадков образуются мелкодисперсные и положительно заряженные коагулюмы в виде пептизированных частиц; в) во второй области быстрой коагуляции ГМК процесс агрегирования коагулюмов возобновляется и вновь образуются разновеликие и крупнодисперсные осадки, не способные пептизироваться.

Установлено, что на скорость образования осадков и их пептизацию заметное влияние оказывает содержание в микрогетерогенной системе гидроксосоединений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$, $Al(H_2O)_4(OH)_2^{+}$.

В качестве объекта исследования выбрана микрогетерогенная система, содержащая постоянное количество дисперсной фазы ГМК $(R_0 = 4,0\cdot 10^{-3} \text{ г})$ и такое количество электролита (R_{30}, Γ) , которое сначала способствует протеканию коагуляционного процесса, а затем обеспечивает пептизацию образовавшихся осадков. Для управления этими процессами применяли растворы электролита, отличающиеся содержанием в них гидроксосоединений алюминия $Al(OH)_6^{3+}(R_1, \%)$, $Al(H_2O)_5(OH)_2^{2+}(R_2, \%)$ и $Al(H_2O)_4(OH)_2^{1-}(R_3, \%)$. Объем микрогетерогенной системы во всех опытах был постоянным и составлял $40,000 \Gamma$.

ГМК получали путем разведения водой до концентрации 0,02% следующих продуктов модификации талловой (а) и живичной (б) канифоли: а) клеевая канифольная композиция ТМВС-2H (ТУ РБ 00280198-029-97), гидродис-

персия Sacocell-309 (фирма KREMS CHEMIE, И укрепленный клей ТМ (ТУ РБ 00280198-017-95); б) укрепленный клей марки ЖМ (ТУ РБ 00280198-017-95). Исследуемые ГМК отличались структурой дисперсной фазы (табл. 1), так как для модификации смоляных кислот канифоли применяли различные модификаторы (R1-R111), изменяли степень их нейтрализации и условия стабилизации дисперсной фазы. Так, например, клеевая канифольная композиция ТМВС-2Н содержала смоляные кислоты, модифицированные моноэфирами малеинового ангидрида с высшими алифатическими *н*-спиртами фракции C_{12} — C_{18} (R^1); они частично (55%) нейтрализованы едким натром и содержали 45% свободных смоляных кислот; для стабилизации частиц дисперсной фазы в структуру этого проклеивающего материала дополнительно введен казеинат аммония $HONH_3$ − R^{IV} −COOH (где R^{IV} − радикал стабилизатора). Для получения гидродисперсии Sacocell-309 в качестве модификатора использовали триэтаноламин (R^{II}), а для укрепленных клеев марок ТМ и ЖМ - моноэтилцеллозольмалеинат (R^{11}) и малеиновый ангидрид соответственно. Для стабилизации частиц дисперсной фазы, содержащихся в 30%-ной гидродисперсии Sacocell-309, применяли казеинат аммония. Следует отметить, что гидродисперсии ТМВС-2Н и Sacocell-309 относятся к высокосмоляным ГМК, а гидродисперсии ТМ и ЖМ-к нейтральным ГМК.

Для электролитной коагуляции исследуемых ГМК и обеспечения пептизации осадков применяли 0,5%-ный раствор сульфата алюми-

ния (ГОСТ 12966-85) с pH 1,95, 3,50 и 4,30. Свежеприготовленный раствор электролита имел pH 3,50 и, как известно [2], содержал 90% $Al(OH)_6^{3+}$ и 10% $Al(H_2O)_5(OH)^{2+}$. Снижение pH его раствора до 1,95 осуществляли добавлением к нему 0,5 н раствора HCl, а повышение pH до 4,3 – добавлением 24%-ного раствора NH₄OH. Поэтому в растворе электролита с pH 1,95 содержалось 100% $Al(OH)_6^{3+}$, а в растворе электролита с pH 4,30 – 85% $Al(OH)_6^{3+}$, 10% $Al(H_2O)_5(OH)^{2+}$ и 5% $Al(H_2O)_4(OH)_2^{+}$.

Элементный состав коагулюмов, полученных в результате коллоидно-химического взаимодействия дисперсной фазы ГМК с гидроксосоединениями алюминия, определяли по методу электронно-зондового энергодисперсного рентгенофлюоресцентного анализа, проведенного на растровом электронном микроскопе (модель JSM-5610 LV). Величину ξ-потенциала коагулюмов и образовавшихся из них осадков определяли по методу макроэлектрофореза [5]. Условия получения осадков в первой и во второй областях быстрой коагуляции ГМК и обеспечения их пептизации установлены ранее [6].

В табл. 2 приведены результаты исследований по изучению влияния содержания в микрогетерогенной системе электролита ($R_{\rm 3n}$) с известным распределением в нем форм гидроксосоединений алюминия ($R_{\rm ICA}$) на элементный состав коагулюмов, образовавших осадки в первой и во второй областях быстрой коагуляции гидродисперсии TMBC-2H, а также пептизированных частиц, полученных после дезагрегирования осадков.

Таблица 1

Структура частиц дисперсной фазы в исходных ГМК

Состав ядра	Адсорбционный слой	Диффузный слой
	Гидродисперсия ТМВС-2Н	1 14
HOOC-R CH-COOR CH-COOH	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	y Na ⁺
	Гидродисперсия Sacocell-309	
R ^{II} OC-R CH-COOH CH-COOH	$b (R^{Ii}OC-R \ CH-COO^{-}) \cdot c (HONH_3-R^{IV}-COO^{-}) \times CH-COO^{-})$	d Na⁺
	$\times (2b+c-d) \text{ Na}^+$	
CIV CODIII	Гидродисперсия ТМ	
HOOC-R CH-COR CH-COOH	$b (\text{OOC-R} < \text{CH-COR}^{\text{III}}) \cdot (2b-c) \text{Na}^{+}$ CH-COO^{-}	c Na ⁺
	Гидродисперсия ЖМ	
HOOC-R CH-COOH	$n (^{-}OOC-R $	y Na ⁺

Влияние гидроксосоединений алюминия $Al(H_2O)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{4+}$ на элементный состав коагулюмов, образовавших осадки, и пептизированных частиц, полученных в результате дезагрегирования осадков

Электролит				Элементный состав (числитель – % мас., знаменатель – % атомные)						
рН	R _{эл} , г		C _{CCA} , %	R_3	C	N	0	Na	Al	S
7.0		R_1	R_2			U	T	NAIC	200000000000000000000000000000000000000	COUNTRIA
	гулюмы, по		ле в пер	вои о						
1,95	5,4.10-4	100		_	23.83	2.14	36.22	<u>4.78</u>	32.59	0.45
					34,46	2,65	39,32	2,34	20,98	0,24
3,50	5,4.10-4	90	10	_	14.10	11.80	23.73	0.42	45.09	4.76
- ,					21,98	15,78	27,77	0,34	31,30	2,78
4,30	5,4.10-4	85	10	5	11.32	0.02	28.47	0.54	48.12	11,52
,					19,28	0,04	36,39	0,48	36,47	7,35
	Пептизир	ованны	е части	цы, по	лученные	в резуль	тате дезаг	регирова	ния осадков	,
	•						рой коагу			-
1,95	8,0.10-4	100	_	_	14.30	11.26	28.05	4.82	6.00	35.57
1					22,52	15,20	33,15	3,96	4,21	20,97
Koar	улюмы, пол	гученны	е во вт	орой с	бласти бы	строй ко	агуляции	ГМК и об	разовавшие	осадки
1,95	9,2.10-4	100		_	13.83	5.14	36.22	9.78	25,50	9,53
	, i				18,56	7,65	39,32	4,34	20,98	9,15
3,50	12,4.10-4	90	10	_	11.44	4.75	43.73	8,34	23.57	8.18
	W. I			8 1	17,76	6,32	50,99	3,88	16,29	4,76
4,30	14,5.10-4	85	10	5	7.71	2.57	58.46	0.71	15,97	2.70
					11,87	3,39	67,59	0,57	9,22	1,85

Аналогичные данные получены для микрогетерогенных систем, содержащих исследуемые ГМК (высокосмоляная гидродисперсия Sacocell-309 и нейтральные гидродисперсии ТМ и ЖМ) и гидроксосоединения алюминия ($Al(OH)_6^{3+}(R_1, \%)$, $Al(H_2O)_5(OH)^{2+}(R_2, \%)$ и $Al(H_2O)_4(OH)_2^{+}(R_3, \%)$); отличие состоит в том, при каких значениях $R_{\rm 3л}$ образуются осадки в первой области быстрой коагуляции ГМК, а затем происходит их пептизация. Однако осадки, образовавшиеся во второй области быстрой коагуляции ГМК, не пептизируются.

В первой области быстрой коагуляции ГМК образуются коагулюмы, элементный состав которых зависит от качественного и количественного распределения гидроксосоединений алюминия $(R_{\Gamma CA} = R_1 + R_2 + R_3)$ в растворе добавленного электролита ($R_{\rm sn} = 5.4 \cdot 10^{-4} \, {\rm r}$). Особенно заметно это отражается на содержании в структуре коагулюмов алюминия (Al) и серы (S). Получено, что в результате коллоидно-химического взаимодействия дисперсной фазы ГМК с гидроксосоединениями алюминия $Al(OH)_6^{3+}(R_1, \%), Al(H_2O)_5(OH)^{2+}(R_2, \%)$ $Al(H_2O)_4(OH)_2^+(R_3, \%)$ образуются коагулюмы, элементный состав которых изменяется при повышении рН раствора электролита от 1,95 до 4,30 следующим образом:

• содержание алюминия (A1) увеличивается от 32,59% мас. (20,98% атомных) до 48,12% мас. (36,17% атомных);

- t " -

- содержание серы (S) увеличивается от 0,45% мас. (0,24% атомных) до 11,52% мас. (7,35% атомных);
- содержание натрия (Na) уменьшается от 4,78% мас. (2,34% атомных) до 0,54% мас. (0,48% атомных);
- содержание углерода (С) уменьшается от 23,83% мас. (34,46% атомных) до 11,32% мас. (19,28% атомных);
- содержание азота (N) сначала увеличивается при повышении рН раствора электролита от 1,95 до 3,50 от 2,14% мас. (2,65% атомных) до 11,80% мас. (15,78% атомных), а затем, когда рН раствора электролита возрастает до 4,30, наоборот, уменьшается до 0,02% мас. (0,04% атомных);
- содержание кислорода (О) при повышении рН раствора электролита от 1,95 до 3,50 сначала уменьшается от 36,22% мас. (39,32% атомных) до 23,73% мас. (27,77% атомных), а затем, когда рН раствора электролита возрастает до 4,30, наоборот, увеличивается до 28,47% мас. (36,39% атомных).

Результаты электронно-зондового энергодисперсионного рентгенофлюоресцентного анализа, представленные в табл. 2, позволили нам предположить структуры коагулюмов, полученных в результате коллоидно-химических взаимодействий дисперсной фазы исследуемых ГМК с гидроксосоединениями алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^2$ и $Al(H_2O)_4(OH)_2^+$ и образовавших осадки в первой области быстрой коагуляции гидродисперсий ТМВС-2H, Sacocell-309, ТМ и ЖМ. Эти данные представлены в табл. 3.

Пептизированные частицы, полученные в результате дезагрегирования осадков, образовавшихся в первой области быстрой коагуляции ГМК, получены нами после дополнительного добавления в микрогетерогенную систему электролита ($R_{\text{доп}}$) с рН 1,95, содержащего 100% Al(OH)₆³⁺. Для обеспечения пептизации осадков необходимо, чтобы $R_{\text{доп}}$ находилось в пределах от $8,0\cdot10^{-4}$ до $5,4\cdot10^{-4}$ моль/л или от $1,8\cdot10^{-4}$ до $2,6\cdot10^{-4}$ г. Заметное увеличение содержания в структуре коагулюма серы, достигающее 35,57% мас. (20,97% атомных), и достаточно высокое содержание кислорода, равное 28,05% мас. (33,15% атомных), свидетельствует о присутствии в адсорбционном и диффузном слоях коагулюмов ионов SO_4^{2-} .

Эти данные позволили предположить структуру пептизированных частиц (табл. 4), образовавшихся в микрогетерогенных системах «ГМК – гидроксосоединения алюминия» для высокосмоляных гидродисперсий ТМВС-211 и Sacocell-309 и нейтральных гидродисперсий ТМ и ЖМ.

Во второй области быстрой коагуляции ГМК, когда в микрогетерогенной системе при сутствует избыточное количество гидроксосос динений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^2$ и $Al(H_2O)_4(OH)_2^+$, процесс агрегирования коагу люмов возобновляется. Образовавшиеся осадки являются разновеликими и крупнодисперсными и не способны пептизироваться.

Структура полученных коагулюмов, как видно из табл. 5, существенно отличается по только от структуры пептизированных частиц, но и от коагулюмов, образовавшихся в первой области быстрой коагуляции ГМК.

Таблица 3 Структура коагулюмов, образовавшихся в результате коллоидно-химического взаимодействия дисперсной фазы ГМК с гидроксосоедиениями алюминия в первой области быстрой коагуляции

Состав ядра	Адсорбционный слой	Диффузный слой
	истема «гидродисперсия ТМВС-2H – гидроксосоединения	алюминия»
HOOC-R CH-COOR CH-COOH	$\begin{array}{c c} & \text{CH-COOR}^{\text{I}} \\ s (\text{OOC-R} &) \cdot t (\text{HONH}_3 - \text{R}^{\text{IV}} - \text{COO}^-) \times \\ & \text{CH-COO}^- \\ \times (2s_{1,3} + t) \text{Al}(\text{H}_2\text{O})_4 (\text{OH})_2^+ \end{array}$	-
Микрогетерогенная си	стема «гидродисперсия Sacocell-309 — гидроксосоединени	«кинимония»
R ^{II} OC-R / CH-COOH CH-COOH	b^{1} (R ^{II} OC-R CH-COO ⁻ CH-COO ⁻ × 2 $q_{1,1}$ Al(H ₂ O) ₄ (OH) ₂ ⁺	_
R ^{II} OC-R CH-COOH	b^{11} (R ^{II} OC-R CH-COO ⁻) · c^{11} (HONH ₃ -R ^{IV} -COO ⁻) × $\times f_{1,2}$ Al(H ₂ O) ₅ (OH) ²⁺	\$ _ M
	я система «гидродисперсия ТМ – гидроксосоединения али	«кинимо»
HOOC-R CH-COOH	b^{1} (OOC-R $\stackrel{\text{CH-COR}^{11}}{\downarrow}$) · 2 $b_{1,1}$ Al(H ₂ O) ₄ (OH) ₂ ⁺	-
HOOC-R CH-COR CH-COOH	b^{11} (-OOC-R) · $b_{1,2}$ Al(H ₂ O) ₅ (OH) ²⁺	-
	я система «гидродисперсия ЖМ – гидроксосоединения ал	«кинимо
HOOC-R CH-COOH	n^{1} (OOC-R $\stackrel{\text{CH-COO}^{-}}{\downarrow}$) · 3 $n_{1,1}$ Al(H ₂ O) ₄ (OH) ₂ ⁺	
HOOC-R CH-COOH	n^{11} ($^{-}$ OOC $-$ R $^{-}$ CH $^{-}$ COO $^{-}$) \cdot (3/2) $n_{1,2}$ Al(H ₂ O) ₅ (OH) ²⁺	_
HOOC-R CH-COOH	n^{111} (OOC-R $\stackrel{\text{CH-COO}}{\mid}$) $\cdot n_{1,3}$ Al(H ₂ O) ₆ $\stackrel{\text{I}}{}^{3+}$	_

Таблица 4 Структура пептизированных частиц, полученных в результате дезагрегирования осадков

Состав ядра	Адсорбционный слой	Диффузный слой
Микрогетерогенная си	стема «гидродисперсия ТМВС-2H – гидроксосоединения	алюминия»
HOOC-R CH-COOH	$s (\text{OOC-R}) / \text{CH-COOR}^1$ $s (\text{OOC-R}) / \text{CH-COO}^-$ $\times ((2/3) \ s + (1/3) \ t + y_1) \ \text{Al}(\text{H}_2\text{O})_6^{3+} \cdot (3 \ y_1 - z) \ \text{SO}_4^{2-}$	z SO ₄ ²
Микрогетерогенная сис	тема «гидродисперсия Sacocell-309 – гидроксосоединени	я алюминия»
R ^{II} OC-R CH-COOH	$b (R^{II}OC-R) \cdot c (HONH_3-R^{IV}-COO^-) \times \\ \times ((2/3) b + (1/3) c + x_1) Al(H_2O)_6^{3+} \cdot (3 x_1 - d) SO_4^{2-}$	$d SO_4^{2-}$
Muunoremenoreitiia	п система «гипрописперсия ТМ — гипроксосоелинения ал	«кинимо
HOOC-R CH-COOH	$b (\text{TOOC-R} \text{CH-COR}^{\text{III}}) \cdot ((2/3) b + d) \text{Al}(\text{H}_2\text{O})_6^{3+} \times \text{CH-COO}^{-1}$	f SO ₄ ²⁻
Микрогетерогенная	и система «гидродисперсия ЖМ – гидроксосоединения ал	«кинимон
HOOC-R CH-COOH		p SO ₄ ²⁻

Таблица 5 Структура коагулюмов, образовавшихся в результате коллоидно-химического взаимодействия дисперсной фазы ГМК с гидроксосоедиениями алюминия во второй области быстрой коагуляции

Состав ядра Адсорбционный слой			
Микрогетерогенная с	истема «гидродисперсия ТМВС-2Н – гидроксосоединения а	«кинимопл	
HOOC-R CH-COOH	$s^{I}(\text{-OOC-R} \downarrow \text{CHCOOR}^{I}) \cdot t^{I}(\text{HONH}_{3}\text{R}^{IV}\text{COO}^{-}) \times \\ \times (2 s_{2.1} + t^{I} + y_{2.1}) \text{Al}(\text{H}_{2}\text{O})_{4}(\text{OH})_{2}^{+} \cdot (1/2) y_{2.1} \text{SO}_{4}^{2-}$	8/ -	
HOOC-R CH-COOR CH-COOH	s^{II} (TOOC-R) · t^{II} (HONH ₃ -R ^{IV} -COO ⁻) × CH-COO ⁻ × ($s_{2,2}$ + (1/2) t^{II} + $y_{2,2}$) Al(H ₂ O) ₅ (OH) ²⁺ · $y_{2,2}$ SO ₄ ² -	_	
HOOC-R CH-COOR CH-COOH	$s^{\text{III}} (\text{-OOC-R} \) \cdot t^{\text{III}} (\text{HONH}_3 - \text{R}^{\text{IV}} - \text{COO}^{-}) \times (2/3) s_{2,3} + (1/3) t^{\text{III}} + y_{2,3}) \text{Al}(\text{H}_2\text{O})_6^{3+} \cdot (3/2) y_{2,2} \text{SO}_4^{2-}$	-	
	стема «гидродисперсия Sacocell-309 – гидроксосоединения	алюминия»	
R ^{II} OC-R CH-COOH	$b^{\text{I}} (\text{R}^{\text{II}}\text{OC-R} \ \ \ \) \cdot c^{\text{I}} (\text{HONH}_3 - \text{R}^{\text{IV}} - \text{COO}^-) \times \\ \times (2 \ q_{2,1} + c^{\text{I}} + x_{2,1}) \text{Al}(\text{H}_2\text{O})_4 (\text{OH})_2^+ \cdot (1/2) x_{2,1} \text{SO}_4^{2-}$	-	
R ^{II} OC-R CH-COOH	$\begin{vmatrix} b^{II} (R^{II}OC - R & CH - COO^{-} \\ CH - COO^{-} \\ \times (q_{2,2} + (1/2) c^{II} + x_{2,2}) Al(H_2O)_5 (OH)^{2+} \cdot x_{2,2} SO_4^{2-} \end{vmatrix}$	_	
R ^{II} OC-R CH-COOH	$b^{\text{III}} (R^{\text{II}}OC - R) \cdot c^{\text{III}} (HONH_3 - R^{\text{IV}} - COO^{-}) \times \\ \times ((2/3) q_{2 3} + (1/3) c^{\text{III}} + x_{2 3}) Al(H_2O)_6^{3+} \cdot (3/2) x_{2 3} SO_4^{2-}$		

Состав ядра	Адсорбционный слой	Диффузный слой
	я система «гидродисперсия ТМ – гидроксосоединения алю	«RИНИМ
HOOC-R CH-COOH	$b^{1} (\text{-OOC-R} \begin{array}{c} \text{CH-COR}^{\text{III}} \\ \text{OOC-R} \\ \text{CH-COO}^{-} \\ \text{CH-COO}^{-} \\ \text{Al(H2O)4(OH)2+} \cdot (1/2) d_{2,1} \text{SO4}^{2-} \\ \end{array}$	-
HOOC-R CH-COOH	$\times Al(H_2O)_4(OH)_2^+ \cdot (1/2) d_{2,1} SO_4^{2-}$ $CH-COR^{III}$ $b^{II} (COC-R) \cdot (b_{2,2} + d_{2,2}) \times CH-COO$ $\times Al(H_2O)_5(OH)^{2+} \cdot d_{2,2} SO_4^{2-}$	-
HOOC-R CH-COOH	$b^{\text{III}} (\text{OOC-R}) \xrightarrow{CH-\text{COO}} (2/3) b_{2,3} + d_{2,3}) \times \\ \times \text{CH-COO} \\ \times \text{Al}(\text{H}_2\text{O})_6^{3+} \cdot (3/2) d_{2,3} \text{SO}_4^{2-}$	-
Микрогетерогенна	я система «гидродисперсия ЖМ – гидроксосоединения аль	«кинимо
HOOC-R CH-COOH	n^{I} (TOOC-R \rightarrow) · (3 $n_{2,1} + z_{2,1}$) × CH-COO × AI(H ₂ O) ₄ (OH) ₂ · (1/2) $z_{2,1}$ SO ₄ ²⁻	-
HOOC-R CH-COOH	n^{II} ($^{\text{COO}}$ -R $^{\text{CH-COO}}$) \cdot ((3/2) $n_{2,2} + z_{2,2}$) \times CH-COO $^{\text{CH-COO}}$ \times Al(H ₂ O) ₅ (OH) ²⁺ \cdot $z_{2,2}$ SO ₄ ²⁻	-
HOOC-R CH-COOH	$n^{\text{HI}} (\text{-OOC-R}) \cdot (n_{2,3} + z_{2,3}) \times \\ \times \text{CHCOO}^{-} \\ \times \text{Al}(\text{H}_2\text{O})_6^{3+} \cdot (3/2) z_{2,3} \text{SO}_4^{2-}$	-

Получено, что в результате коллоиднохимического взаимодействия дисперсной фазы исследуемых ГМК с гидроксосоединениями алюминия образуются коагулюмы, элементный состав которых изменяется при повышении рН раствора электролита от 1,95 до 4,30 следующим образом:

- содержание кислорода (О) увеличивается от 36,22% мас. (39,32% атомных) до 58,46% мас. (67,59% атомных);
- содержание натрия (Na) уменьшается от 9,78% мас. (4,34% атомных) до 0,71% мас. (0,57% атомных);
- содержание алюминия (AI) уменьшается от 25,50% мас. (20,98% атомных) до 15,97% мас. (9,22% атомных);
- содержание серы (S) уменьшается от 9,53% мас. (9,15% атомных) до 2,70% мас. (1,85% атомных);
- содержание углерода (С) уменьшается от 13,83% мас. (18,56% атомных) до 7,71% мас. (11,87% атомных);
- содержание азота (N) уменьшается от 5,14% мас. (7,65% атомных) до 2,57% мас. (3,39% атомных).

Следует отметить, что осадки, образовавшиеся во второй области быстрой коагуляции ГМК, сформированы из трех видов коагулюмов, полученных в результате коллоидно-

химического взаимодействия дисперсной фазы исследуемых гидродисперсий (ТМВС-2H, Sacocell-309, ТМ и ЖМ) с гидроксосоединениями алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^2$ и $Al(H_2O)_4(OH)_2^+$. Размер осадков находится пределах 2900–3800 нм. Результаты исследований свидетельствуют о том, что осадки являются не только крупнодисперсными, но и разповеликими. Поэтому, на наш взгляд, такие осадки не пептизируются.

Установлено, что скорость агрегирования коагулюмов и, следовательно, размеры образовавшихся осадков, способных пептизиро ваться, зависят от содержания в микрогетеро генной системе гидроксосоедиений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^2$ и $Al(H_2O)_4(OH)_2^{-1}$ Так, например, в результате электролитной коагуляции гидродисперсии ТМВС-2Н осадки имеют размер в пределах 2500-2900 нм и представляют собой коагуляты, сформированные и 14-16 коагулюмов. Для обеспечения пептизации таких осадков необходимо дополнительно ввести в микрогетерогенную систему электро лит в количестве $2.6 \cdot 10^{-4}$ г. При этом пептизирующее действие оказывают, по нашему мнению, преимущественно гексаакваалюминиевые ионы $Al(OH)_6^{3+}$. Их содержание в микрогетерогенной системе должно находиться в пределах от $0.5 \cdot 10^{-4}$ до $0.7 \cdot 10^{-4}$ г.

Аналогичные данные получены для гидродисперсий Sacocell-309, ТМ и ЖМ. Отличие состоит в том, что для образования осадков, способных пептизироваться, необходимо, чтобы микрогетерогенная система содержала требуемое количество электролита с заданным содержанием в нем гидроксососоединений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^{+}$. Это оказывает существенное влияние не только на элементный состав, электрокинетический потенциал и скорость агрегирования коагулюмов, но и на способность образовавшихся осадков пептизироваться.

Установлено, что в результате коллоиднохимического взаимодействия дисперсной фазы гидродисперсий Sacocell-309, ТМ и ЖМ образуются коагулюмы, представляющие собой три-, ди- и монорезинаты алюминия. Все они участвуют в формировании осадков. Однако размеры осадков зависят от количества формирующих их коагулюмов (N). Величина N зависит от коллоидно-химических свойств ГМК и находится в пределах 13–16 для гидродисперсии Sacocell-309, 17–24 для гидродисперсии ТМ и 18–21 для гидродисперсии ЖМ.

Анализ результатов исследований, проведенных по методу макроэлектрофореза, свидетельствует о том, что осадки являются электронейтральными, в то время как пептизированные частицы имеют положительный электрокинетический потенциал. Их ξ -потенциал зависит от коллоидно-химических свойств ГМК (в особенности от структуры дисперсной фазы) и количества присутствующих в микрогетерогенной системе гидроксосоединений алюминия $Al(OH)_6^{3+}$, обеспечивающих пептизацию осадков.

Установлено, что пептизированные частицы, полученные из осадков, образовавшихся при электролитной коагуляции исследуемых ГМК, имеют ξ -потенциал в следующих пределах:

- от +6 до +8 мВ для гидродисперсии ТМВС-2H;
- от +25 до +35 мВ для гидродисперсии Sacocell-309;
 - от +27 до +40 мВ для гидродисперсии ТМ; • от +30 до +38 мВ для гидродисперсии ЖМ.

Кроме того, пептизированные частицы являются мелкодисперсными, так как их размер (d_n) максимально приближается к размеру частиц дисперсной фазы (d_0) в исходной ГМК, т. е.

выполняется условие $d_0 = d_0$.

Установлено, что коагулюмы, образовавшиеся в первой и во второй областях быстрой коагуляции ГМК, агрегируются. Скорость коагуляции (W, см $^{-1}$ ·с $^{-1}$) уменьшается от макси-

мальных значений до минимальных при увеличении продолжительности (t) коагуляционного процесса от 0,5 до 60,0 мин. Так, например, для высокосмоляной гидродисперсии ТМВС-2Н установлено, что в первой области быстрой коагуляции $W=0,8\cdot 10^{-2}$ при t=0,5 мин и W=0 при t=60,0 мин, а во второй области быстрой коагуляции $W=1,4\cdot 10^{-2}$ при t=0,5 мин и $W=1,0\cdot 10^{-4}$ при t=60,0 мин. Однако в отличие от коагулюмов, участвующих в формировании осадков, полученные пептизированные частицы являются агрегативно устойчивыми. Об этом свидетельствует тот факт, что W=0 при увеличении t от 0,5 до 60,0 мин.

Таким образом, изучены коллоиднохимические взаимодействия в микрогетерогенной системе «дисперсная фаза ГМК - гидроксосоединения алюминия». Установлено, что в первой области быстрой коагуляции ГМК образуются коагулюмы, после агрегирования которых формируются разновеликие и крупнодисперсные осадки; такие осадки пептизируются. Однако осадки, образовавшиеся во второй области быстрой коагуляции ГМК, не пептизируются. Исследовано влияние гидроксосоединений алюминия $Al(OH)_6^{3+}$, $Al(H_2O)_5(OH)^{2+}$ и $Al(H_2O)_4(OH)_2^+$ на структуру коагулюмов, образовавших осадки в первой и второй областях быстрой коагуляции ГМК, и пептизированных частиц, полученных в результате дезагрегирования осадков.

Литература

- 1. Черная Н. В., Ламоткин А. И. Проклейка бумаги и картона в кислой и нейтральной средах. Мн.: БГТУ, 2003. 345 с.
- 2. Назаренко В. А., Антонович В. П., Невская Е. М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1979. 192 с.
- 3. Черная Н. В., Эмелло Г. Г., Ламоткин А. И. Влияние форм гидроксосоединений алюминия на закономерности процесса электролитной коагуляции канифольной эмульсии ТМВС-2Н // Труды БГТУ. Сер. IV. Химия и технология орган. в-в. 2003. Вып. XI. С. 55–59.
- 4. Черная Н. В., Эмелло Г. Г., Ламоткин А. И. Влияние основных солей алюминия на кинетику быстрой коагуляции гидродисперсии модифицированной канифоли // Весці НАН Беларусі. Сер. хім. навук. 2005. № 4. С. 106—112.
- 5. Лабораторные работы и задачи по коллоидной химии / Под ред. Ю. Г. Фролова, А. С. Гродского. – М.: Химия, 1986. – 213 с.