Л.Л. Гладков¹, проф., д-р физ.-мат. наук; Д.В. Петрова², науч. сотр., канд. хим. наук; В. Маес³, проф., Д.В. Кленицкий⁴, доц., канд. физ.-мат. наук; Н.Н. Крук⁴, зав. кафедры физики, д-р физ.-мат. наук ¹(БГАС, г. Минск), ²(ИГХТУ, г. Иваново, РФ), ³(Университет Хассельта, г. Хассельт, Бельгия), ⁴(БГТУ, г. Минск)

О ФОРМИРОВАНИИ ЧЕТЫРЕХ NH-ТАУТОМЕРОВ В СВОБОДНЫХ ОСНОВАНИЯХ АССИММЕТРИЧНО ЗАМЕЩЕННЫХ КОРРОЛОВ

Корролы относятся к группе сокращенных тетрапиррольных соединений, потому что в макроцикле корролов отсутствует один метиновый мостик и два соседних пиррольных кольца соединены Са-Са связью. Вместе с тем, корролы сохраняют ароматический характер в результате того, что макроцикл свободных оснований корролов содержит три пиррольных и одно пирролениновое кольцо, в отличие от макроцикла свободного основания порфирина, включающего по два пиррольных и пирролениновых кольца. Поскольку пиррольное кольцо донирует в π -электронную систему макроцикла на один электрон больше, чем пирролениновое, то это компенсирует отсутствие π электрона атома углерода метинового мостика. Однако, структурные отличия порфиринов и корролов на этом не заканчиваются. Дело в том, что три протона не могут разместиться в плоскости ядра тетрапиррольного макроцикла, и, таким образом, индуцируются отклонения от планарного строения макроцикла даже при отсутствии любых других возмущающих факторов.

Свободные основания коррола всегда существуют в виде NH-таутомеров, отличающихся расположением трех протонов в асимметричном (из-за отсутствия одного метинового мостика) макроцикле, которые могут претерпевать взаимные превращения в основном и возбужденных электронных состояниях. Хотя NH-таутомеры являются изоэлектронными, распределение электронной плотности у них различается, что приводит к формированию существенно отличающихся спектров поглощения и люминесценции NH-таутомеров [1–2]. Следует подчеркнуть, что понятие асимметрии для свободных оснований корролов носит иерархический характер. Чаще всего, асимметрия трактуется как результат различия в способах соединения пиррольных колец при формировании макроцикла. Эта асимметрия является неотъемлемой характеристикой корролов. В случае свободных оснований корролов это приводит к существованию двух NH-

таутомеров (рис. 1), у которых протоны локализованы либо в дипиррометеновом фрагменте макроцикла (таутомеры Т1), либо в дипиррольном (таутомер Т2).

Рисунок 1 – Структура исследуемых NH-таутомеров асимметрично замещенного 5,10-димезитил-коррола

Реакционная способность C_m атомов углерода в положениях 5 и 15 очень близка. Поэтому подавляющая часть свободных оснований корролов, замещенных по *мезо*-положениям, представляет собой соединения типов A_3 либо A_2B , т.е. замещение симметрично относительно оси, проходящей через C_m атом углерода в положении 5 и середину связи C_1 — C_{19} в дипиррольном фрагменте. Для таких соединений также могут наблюдаться только два NH-таутомера — T1 и T2.

Однако, если периферическое замещение макроцикла также

асимметрично, т. е. во всех *мезо*-положениях присоединены различные заместители — так называемое замещение ABC типа, то количество возможных NH-таутомеров должно увеличиться вдвое (рис. 1). Поэтому в настоящей работе квантово-химическими методами мы изучили свободные основания 5,10-димезитил-коррола, у которых 15 положение занимает протон. Анализ оптимизированной геометрии четырех возможных NH-таутомеров показал, что все они различаются (таблица).

Таблица – Среднеквадратичное отклонение атомов от средней плоскости макроцикла Δ23 и двугранные углы наклона пиррольных колец к средней плоскости макроцикла φ

milottoetti mukboqiikiu v				
	T1	T2	Т3	T4
Δ23, Å	0,1977	0,1922	0,1906	0,1686
φ _A , °	18,6	17,0	7,01	5,27
φв, °	9,60	5,93	2,95	2,02
φc, °	5,78	4,79	10,1	4,43
φ _D , °	6,36	4,99	17,6	19,3

Действительно, асимметричное замещение мезитильными группами в 5,10-пложениях макроцикла приводит к формированию четырех различных NH-таутомеров. Эти таутомеры характеризуются различной степенью неплоскостных искажений макроцикла, причем отличия в величине параметра $\Delta 23$ в парах таутомеров T1 и T2, T3 и T4 весьма существенны.

ЛИТЕРАТУРА

- 1. Крук Н. Н. Строение и оптические свойства тетрапиррольных соединений. Минск, БГТУ. 2019. С. 216.
- 2. Origin of the Individual Basicity of Corrole NH-Tautomers: A Quantum Chemical Study on Molecular Structure and Dynamics, Kinetics, and Thermodynamics / W. J. D. Beenken [et al.] // J. Phys. Chem., A. 2015. Vol. 119, № 26. P. 6875–6883.