5. Сухоцкий А.Б., Данильчик Е.С., Маршалова Г.С. Влияние межтрубного шага на конвективную теплоотдачу воздухоохлаждаемого пучка с вытяжной шахтой // Вестник фонда фундаментальных исследований. 2020. № 2. С. 160–169.

EXPERIMENTAL STUDY OF THE AVERAGE HEAT TRANSFER OF A FOUR-ROW BUNCH IN THE MODES OF FREE CONVECTION AND WITH ITS INTENSIFICATION WITH THE HELP OF THE EXTRACTOR SHAFT

Danilchik E.^{1,2}, Mironov A.³

katya.156.156@gmail.com
Supervisors: A. Sukhotskii¹, PhD (Engineering), Associate Professor,
I. Popov³, DSc (Engineering), Professor
(¹Belarusian State Technological University, Minsk,

²A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, Minsk,

³Kazan National Research Technical University named after A. N. Tupolev–KAI, Kazan)

The article presents the results of an experimental study of the average heat transfer of a staggered four-row bundle of bimetallic finned tubes with a ribbing coefficient $\varphi = 19.3$ in the free convection mode and with its intensification using an exhaust shaft, generalizing similarity equations in the form Nu = $f(Ra, H_{\Pi-III})$ with an error of 5–18%, Nu = $f(Ra, H_{\Pi-III})$ – 5%. It was found that the intensification of free-convective heat exchange of air using shaft 1 with H = 0.52 m makes it possible to increase the heat transfer rate of a four-row beam by 1.1–2.3 times, of shaft 1 with H = 1.04 m by 1.5–3 times and of shaft 2 by 1.3–2 times.

УДК 44.31.35

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПЛОЩАДИ ВЫХОДНОГО ОТВЕРСТИЯ И ВЫСОТЫ ВЫТЯЖНОЙ ШАХТЫ НА СВОБОДНО-КОНВЕКТИВНЫЙ ТЕПЛООБМЕН ОДНОРЯДНОГО ПУЧКА С РАЗЛИЧНОЙ ВЫСОТОЙ ОРЕБРЕНИЯ ТРУБ В ПОТОКЕ ВОЗДУХА

Данильчик *E.C.*^{1,2}

katya.156.156@gmail.com
Научные руководители: А.Б. Сухоцкий¹, к.т.н., доцент,
(¹Белорусский государственный технологический университет, г. Минск,
²Институт тепло- и массообмена имени А.В. Лыкова
Национальной академии наук Беларуси, г. Минск)

В статье представлены результаты экспериментального исследования средней теплоотдачи однорядного пучка биметаллических оребренных труб с различной выстой оребрения (коэффициент оребрения $\phi \approx 1{\text -}19,6$) в режиме свободной конвекции, интенсифицированной с помощью вытяжной шахты. Получено, что при увеличении площади выходного отверстия шахты 1 и высоты шахты 2 наблюдается рост интенсивности теплоотдачи.

Теплоутилизационные установки, в частности, воздухоохлаждаемые теплообменники (ВОТ) широко используются в топливно-энергетическом комплексе, воздушноотопительных агрегатах, приточно-вытяжной системе вентиляции зданий и сооружений, холодильной технике и т.д. Они в основном функционируют в режиме вынужденной конвекции, в результате на их привод затрачивается большое количество электроэнергии. Один из способов решения этой проблемы — перевод ВОТ в режим свободной конвекции с полным или частичным отключением электропривода вентиляторов, обеспечивая при этом заданный тепловой режим. Главными недостатками ВОТ являются малые коэффициенты теплопередачи

и существенные массо-габаритные характеристики. Поэтому актуальными являются исследования, связанные с разработкой методов интенсификации теплообмена, которые позволят развить площадь, изменить геометрию теплопередающей поверхности или изменить характер течения воздуха внутри теплообменных аппаратов для их эффективной эксплуатации в режиме свободной конвекции.

В работе были проведены экспериментальные исследования однорядного пучка из шести труб с поперечным шагом S_1 = 64 мм. Геометрические размеры биметаллических оребренных труб со спиральными накатными ребрами следующие: наружный диаметр оребрения d = 56 мм; диаметр трубы по основанию d_0 = 26,8 мм; высота ребра h = 14,6 мм; шаг ребра s = 2,5 мм; средняя толщина ребра Δ = 0,5 мм; коэффициент оребрения трубы ϕ = 19,3 (I тип, h/s = 5,84). Материал ребристой оболочки — алюминиевый сплав АД1М, материал несущей трубы — углеродистая сталь, длина трубы $l_{\rm II}$ = 330 мм (теплоотдающая длина l = 300 мм). Диаметр несущей трубы $d_{\rm H}$ = 25 мм, толщина стенки δ = 2 мм. Для изменения высоты оребрения трубы ее ребра стачивались путем шлифования с образованием новых типов труб, а компоновка однорядных пучков производилась с постоянным относительным поперечным шагом σ_1 = S_1 / d = 1,14 = const: II тип – h/s = 4,80, ϕ = 15,1; III тип – h/s = 3,20, ϕ = 9,4; IV тип – h/s = = 1,64, ϕ = 4,8; V тип – h/s = 0,80, ϕ = 2,8; VI тип – гладкая труба, $h/s \to 0$, $\phi \to 1$.

Для интенсификации свободно-конвективного теплообмена воздуха над однорядными пучками труб различных типов I–VI устанавливались два типа шахт – с регулируемым проходным сечением $f_{\text{отв}} = 0,0087$ – $0,0330 \,\text{м}^2$, высотой $H = 0,52 \,\text{м}$ (шахта 1) и регулируемой высотой H = 0,52– $2,12 \,\text{м}$ с площадью выходного отверстия $f_{\text{отв}} = 0,0087 \,\text{m}^2$ (шахта 2) [1].

Экспериментальное исследование проводились методом полного теплового моделирования. Применялся обогрев оребренных труб вставными теплоэлектронагревателями. Центральная труба пучка являлись калориметрами, на ней измерялись значения мощности и температуры стенки у основания ребер для определения приведенного среднего коэффициента теплоотдачи конвекцией [2]. В ходе проведения экспериментов электрическая мощность, подводимая к оребренным трубам, изменялась в диапазоне W=6–200 Вт, средняя температура стенки калориметров $t_{\rm cr}=30$ –190°C и средняя температура в шахтах 1 и 2 $t_{\rm m}=23$ –111°C, а температура окружающего воздуха в камере $t_0=16$ –25°C. Скорость воздуха в сжатом сечении пучка составляла около w=0,1–1,2 м/с.

По данным измерений рассчитывался средний приведенный коэффициент теплоотдачи конвекцией, отнесенный к полной наружной поверхности оребренной трубы α_{κ} , $\mathrm{Bt}/(\mathrm{M}^2 \cdot {}^{\circ}\mathrm{C})$. При его определении учитывалась лучистая составляющая Q_{II} , Bt и составляющая потерь Q_{II} , Bt [1, 3, 4]. Экспериментальные данные обрабатывали и представлялись в виде чисел подобия Нуссельта $\mathrm{Nu} = \alpha_{\kappa} \cdot d_0 / \lambda$ и Релея $\mathrm{Ra} = \beta \cdot g \cdot d_0^3 (t_{\mathrm{cr}} - t_0) / (v \cdot a)$, где $\beta = 1 / (t_0 + 273)$ — коэффициент температурного расширения воздуха, $1/\mathrm{^{\circ}C}$ и g — ускорение свободного падения, $\mathrm{M/c}^2$. Коэффициенты теплопроводности λ , $\mathrm{Bt}/(\mathrm{M\cdot ^{\circ}C})$, кинематической вязкости ν , $\mathrm{M^2/c}$, и температуропроводности a, $\mathrm{M^2/c}$, принимали по температуре окружающей среды t_0 , $\mathrm{^{\circ}C}$. В качестве определяющего размера был принят диаметр трубы по основанию ребер d_0 , M .

Для изучения влияния геометрических параметров вытяжной шахты на интенсивность теплоотдачи однорядного пучка (типы I–VI) при постоянном числе Релея $Ra=100\ 000\ были$ построены зависимости: $Nu=f(f_{OTB})$ и Nu=f(H)- размерные, $Nu=f(\chi_{III})$ и $Nu=f(H_{II-III})-$ безразмерные, представленные на рис. 1.

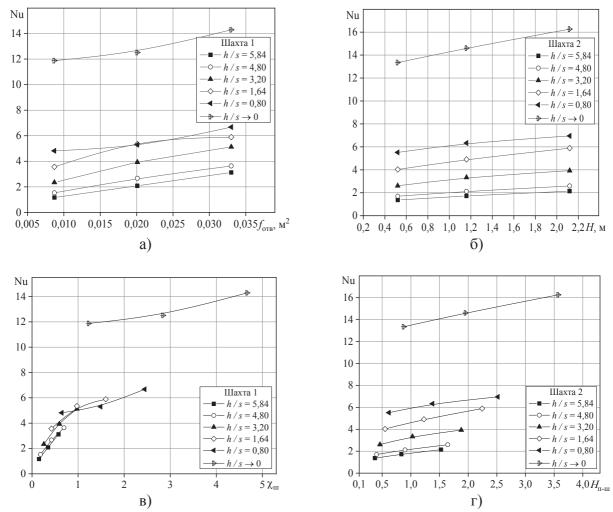


Рис. 1. – Влияние геометрических параметров вытяжной шахты на интенсивность теплоотдачи однорядного пучка (типы I–VI):

шахта 1 (с регулируемым проходным сечением, при H = 0.52 м) - a), в) и шахта 2 (с регулируемой высотой, при $f_{\text{отв}} = 0.0087 \text{ м}^2) - б$), г) при $Ra = 100 \ 000$

Согласно данным, представленным на рис. 1, при увеличении площади выходного отверстия $f_{\text{отв}}$ шахты 1 и высоты H шахты 2 наблюдается рост интенсивности теплоотдачи. Полученные результаты хорошо согласуются с данными работ [5] для однорядных пучков оребренных труб с $\varphi = 21$ в режиме смешанной конвекции воздуха.

Благодарности. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант T21PM-019).

СПИСОК ЛИТЕРАТУРЫ:

- 1. Сухоцкий А.Б., Данильчик Е.С. Конвективная теплоотдача однорядных пучков из труб с накатными алюминиевыми ребрами различной высоты при малых числах Рейнольдса // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2021. Т. 64. № 4. С. 336–348.
- 2. Сухоцкий А.Б., Данильчик Е.С. Исследование свободноконвективного теплообмена оребренной трубы и однородного пучка при различных углах наклона труб к горизонтальной плоскости // Труды БГТУ. Сер. 1, Лесное хозяйство, природопользование и переработка возобновляемых ресурсов. 2019. № 2. С. 272–279.
- 3. Данильчик Е.С., Сухоцкий А.Б., Кунтыш В.Б. Экспериментальные исследования эффективности однорядного пучка из биметаллических оребренных труб с различной высотой

оребрения при свободно-конвективном теплообмене с воздухом // Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2020. Т.22. №5. С. 128–141.

- 4. Сухоцкий А.Б., Маршалова Г.С., Данильчик Е.С. Особенности расчета лучистой составляющей теплового потока горизонтального пучка из оребренных труб с вытяжной шахтой // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2020. Т. 63. N 4. С. 380–388.
- 5. Сухоцкий А. Б., Сидорик Г.С. Исследование смешанноконвективной теплоотдачи однорядных воздухоохлаждаемых теплообменников при различных поперечных шагах установки труб // Известия высших учебных заведений. Проблемы энергетики. 2017. №19. С. 3–11.

EXPERIMENTAL STUDY OF THE EFFECT OF THE OUTLET AREA AND THE HEIGHT OF THE EXHAUST SHAFT ON THE FREE CONVECTIVE HEAT EXCHANGE OF A SINGLE BUNCH WITH DIFFERENT HEIGHT OF TYBE IN THE AIR FLOW

Danilchik E.S. 1,2

katya.156.156@gmail.com
Supervisors: A. Sukhotskii¹, PhD (Engineering), Associate Professor,

(¹Belarusian State Technological University, Minsk,

²A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, Minsk)

The article presents the results of an experimental study of the average heat transfer of a single-row bundle of bimetallic finned tubes with different heights of finning (finning coefficient $\phi \approx 1{\text -}19.6$) in the free convection mode, intensified using an exhaust shaft. It was found that with an increase in the area of the outlet of shaft 1 and the height of shaft 2, an increase in the intensity of heat transfer is observed.

УДК 621.564.2:621.577

ДИОКСИД УГЛЕРОДА КАК ХЛАДАГЕНТ ТЕПЛОВЫХ НАСОСОВ, ПРИМЕНЯЕМЫХ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ $\it Даутов~P.P.$

gluza.dautova@ya.ru

Научный руководитель: А. Е. Кондратьев, к.т.н., доцент Казанский государственный энергетический университет, г. Казань

Аннотация: в работе представлены особенности применения диоксида углерода в качестве хладагента теплового насоса, изучены его основные достоинства по сравнению с традиционными холодильными агентами и целесообразность применения в системах теплоснабжения.

В настоящее время широкое применение в мировой практике альтернативных источников тепловой энергии постепенно ведет к вытеснению традиционных. Это объясняется возможностью получения дешевого тепла без вреда для окружающей среды, а также нескончаемыми запасами природных источников. Одним из таких энергоэффективных решений, применяемых для систем теплоснабжения, является тепловой насос (ТН). По принципу действия он представляет собой устройство, с помощью которого можно преобразовать тепло от источника с низким температурным уровнем в высокопотенциальную тепловую энергию [1].

Тепловой насос состоит из конденсатора, испарителя, расширительного клапана, и компрессора. Все эти конструктивные элементы соединены в один замкнутый контур. По