Минск 1972

В. П. Савиных

ПССЛЕДОВАНИЕ ВЛИЯНИЯ ФЕНОЛФОРМАЛЬДЕГИДНЫХ СМОЛ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННЫХ ДРЕВЕСНЫХ ПЛАСТИКОВ

Быстрое развитие химии и физики высокомолекулярных соедимений способствует синтезу сотен новых полимеров, олигомеров, мономеров. Это в свою очередь позволяет изготовлять широкий асортимент новых материалов, изделий и деталей, обладающих ценмыми свойствами. В зависимости от применения тех или иных свямующих веществ можно получить композиционные древесные пластики с существенными различиями физико-механических свойств.

Применяемые связующие в силу своих физико-химических качеств, как составная часть композиции, влияют на свойства пластика. Кроме того, различные связующие по-разному пропитывают и модифицируют органический наполнитель — древесные опилки.

Задача наших исследований заключалась в изучении влияния различных фенолформальдегидных смол на свойства композицион-

ных древесных пластиков.

Прессование образцов проводилось по оптимальному режиму для композиционных древесных пластиков на фенолформальдегидных смолах: давление прессования 400 кГ/см², температура 150°, премя выдержки 1 мин/мм толщины образца. Сравнение физикомеханических свойств пластика на основе различных фенолформальдегидных смол проводилось на стандартных образцах соглас-

по методике ГОСТ «Пластмассы».

В какой мере вид связующего влияет на показатели физикомеханических свойств пластика и на каком связующем пластик имеет максимальные значения показателей, определялось методом однофакторного дисперсионного анализа. Цель дисперсионного анализа — разложение суммарной дисперсии на две: дисперсию, обусловленную методикой эксперимента, и дисперсию, вызванную действием изучаемого фактора, т. е. вида связующего. С помощью дисперсионного анализа было проведено и сравнение показателей свойств пластика. Если обозначить вид связующего через фактор A, то изучаемые уровни будут $A_1, A_2, \ldots, A_{\kappa}$. Число уровней фактора A равно числу выбранных нами фенолформальдегидных смол (k=14). На каждом уровне A проделывалась некоторая серия из n наблюдений: x_{i1} , x_{i2} , ..., x_{in} . Среднее значение наблюдений на i-уровне равно

$$\overline{x}_i = \frac{1}{n} \sum_{j=1}^n x_{ij} \,. \tag{1}$$

Среднее всех наблюдений по всем уровням

$$= \frac{1}{x} = \frac{1}{kn} \sum_{i=1}^{k} \sum_{j=1}^{n} x_{ij}.$$
 (2)

Суммирование по *j* при постоянном *i* дает сумму результатов наблюдений *i* выборки. При дальнейшем суммировании по *i* нолучается итог результатов наблюдений по всем выборкам. Общивыборочная дисперсия всех наблюдений

$$S^{2} = \frac{1}{kn-1} \sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \overline{x})^{2}.$$
 (8)

Эта дисперсия характеризует действие всех факторов и, очевидно равна сумме дисперсии σ^2_A , обусловленной действием фактора Λ (т. е. связующего), и дисперсии σ^2 , обусловленной методикон эксперимента или его воспроизводимостью. Для того чтобы оценить дисперсию воспроизводимости, определялись выборочные дисперсии для каждого уровня:

$$S^{2}_{i} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{i})^{2}.$$
 (4)

Мы получили серию дисперсий $S_1^2, S_2^2, \ldots, S_\kappa^2$, характеризующих фактор случайности на всех уровнях. Если между дисперсиями нет значимых различий, то их можно использовать для оценки генеральной дисперсии методики эксперимента \mathfrak{a}^2 . Мы получили оценку

$$S_0^2 = \frac{1}{k} \sum_{j=1}^k S_i^2, \tag{5}$$

имеющую k(n-1) степеней свободы.

Оценку дисперсии фактора А нашли по изменению средних х, по отдельным уровням:

$$S^{2}_{A} = \frac{n}{k-1} \sum_{i=1}^{k} (\overline{x_{i}} - \overline{\overline{x}})^{2}. \tag{6}$$

Эта дисперсия имеет k-1 степеней свободы. Для того чтобы влияние фактора A было значимым, необходимо и достаточно, чтобы дисперсия S^2_A значимо отличалась от S_0^2 . Сравнение S^2_A и S_0^3 проводилось по критерию Фишера. Фактор A признается значимым при уровне значимости p, если $S^2_A/S_0^2 > F_{1-p}$, пде F-распределение рассматривается с $f_1 = k-1$ и $f_2 = k$ (n-1) степенями свободы.

тели же $S^2{}_A/S_0{}^2 \ll F_{1-p}$, то влияние фактора A надо считать нешлительным. Сравнение дисперсий $S^2{}_A$ и $S_0{}^2$, по критерию Фишел, показало значительное влияние фенолформальдегидных смол свойства пластика.

Когда уровни фактора A в целом значимо различаются, перещим к попарному сравнению уровней с помощью t-распределения. Известно, что если две генеральные совокупности имеют одну ту же дисперсию и если две случайные выборки независимы пруг от друга, то величина

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{S_0 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 (7)

имеет распределение t Стьюдента с $f=n_1+n_2-2$ степенями своюды. Используя квантили t_{1-p} , мы записываем критическую общесть для проверки гипотезы $\mu_1=\mu_2$, определяемую неравенством

$$\frac{\overline{(x_1 - x_2)}}{S_0 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < t_{1-\rho}, \tag{8}$$

или гипотеза равенства $\mu_1 = \mu_2$ отвергается, если

$$(\overline{x_1} - \overline{x_2}) \geqslant t_{1-p} S_0 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}.$$
 (9)

Вычисленные характеристики дисперсионного анализа при ис-

пытании пластика представлены в табл. 1.

Сравнение пределов прочности при статическом изгибе и сжани, ударной вязкости, числа твердости пластика на различных фенолформальдегидных смолах представлено в табл. 2—5. В них приведены критические области для проверки равенства средних начений показателей при уровне значимости 5 и 0,5%. Сравнение шсленных значений показателей позволяет выявить марки смолы, дающие максимальные значения тех или иных свойств пластика.

Водопоглощение пластиков, изготовленных на различных смо-

лах, представлено в табл. 6.

Текучесть изучаемых пресс-композиций, по Рашигу, при температуре 150° и давлении 300 $\kappa\Gamma/cm^2$ составила: 229—197 мм, 21—229—185, 219—180, 228—148, 239—115, Φ C—100, CБС—1—10, 249—33, C-35—35, 101—18 мм.

Антифрикционные свойства древесных пластиков на различных фенолформальдегидных смолах представлены в табл. 7.

Исследования показали, что наиболее высокими физико-меха-

Таблици

Результаты дисперсионного анализа испытаний

Рассеяние	Число степеней свободы	Дисперсия
На пре	едел п роч ност	и при статическом изгибе
Между уровнями	13	$S^{2}_{A} = \frac{964\ 093}{13} = 74\ 161 \qquad 59,1$
.Между испытаниями	112	$S_0 = \frac{140336}{112} = 1253$
	На удар	ную вязкость
Между уровнями	13	$S^{2}A = \frac{102,7}{13} = 7,9 $ 46,7
Между испытаниями	112	$S^{2}_{0} = \frac{18,9}{112} = 0,169$

На предел прочности при сжатии

Между уровнями	13	$S^{2}_{A} = \frac{6702228}{13} = 515556 \qquad 161$
Между испытаниями	112	$S^{2}_{0} = \frac{358400}{112} = 3200$

На число твердости

Между уровнями	13	$S^{2}_{A} = \frac{87,98}{13} = 676,8 $ 45,1
.Между испытаниями	112	$S^{2}_{0} = \frac{1679}{112} = 15,0$

ническими показателями обладает пластик на основе фенолоспиртов. Являясь первичным продуктом поликонденсации фенола формальдегидом, фенолоспирты легко смешиваются с опилками проникают в микро- и субмикроструктуру древесины. Наличит большого количества метилольных и гидроксильных групп в фенолоспиртах способствует образованию физико-химических связей связующего с древесными частицами.

Предел прочности при статическом изгибе пластиков, полученных на смолах ФС, С-1-50 выше, чем полученных на лаке СБС-1 п С-35. Ударная вязкость на смолах С-35, С-1-30, С-1-50, 249 имее большие значения, чем для пластиков на СБС-1 и фенолоспиртах которые дают средние значения показателя. Предел прочности при сжатии на основе смол ФС, 228, 21×229, 219, 229 выше, чем па СБС-1 и С-35. Твердость пластиков на смолах 21×229, 239, ФС

Таблица 2

Антифрикционные свойства пластиков

Марка смолы	Износ, мкм/км	Коэффициент трения	Установившаяся темпе ратура трення, °C
îlə	0,545	0,026	30
CBC-1	0,560	0,026	32
ÞC	0,562	0,033	39
249	0,683	0,053	50
1×22∍	0,815	0,039	44
29	0,821	0,039	46
28	1,28	0,030	34
239	1,38	0,033	36
C-1-30	3,16	0,097	73
C-1-50	3,67	0,144	77

"28 выше твердости пластиков на лаке СБС-1. Пластики на основемол 21×22э, 22э, 21э, 228, 239, ФС обладают меньшим водопоглощением, чем пластики на лаке СБС-1. Лучшей текучестью характеризуются пластики на смолах 21э, 22э и спиртоводноэмульсионых — 228, 239. Наибольшей износостойкостью обладают пластики на смолах 21∍, СБС-1, ФС, 249, 21×22∍. Остальные пластики менее износостойки.

Сравнивая физико-механические свойства, находим, что платики на основе одной группы смол имеют лучшие показатели на татический изгиб и ударную вязкость, а на основе другой группы — лучшие показатели на сжатие, твердость, водопоглощение. Это связано с синтезом, свойствами смол и процессом их отверждения.

Одна группа применяемых смол синтезирована в сильнощелочной среде, вторая — в слабощелочной. Низкомолекулярные, высокополярные связующие глубже пропитывают древесные частицы, проникая в микро- и субмикроструктуру. Одним из таких свяіующих являются фенолоспирты. Водноэмульсионные и водорастпоримые смолы характеризуются более мелкими молекулами и благодаря воде легче и равномернее пропитывают древесные частицы. Полностью сконденсированные спирторастворимые смолы имеют более крупные молекулы, длинные цепи которых затрудняют проинтку. В процессе пропитки опилок под воздействием сильнощелочпого раствора смолы происходит частичная делигнификация древесины. Слабощелочной раствор связующего способствует более полпому прохождению гидролиза древесных частиц при изготовлении пластиков. Пластики на основе смол, синтезированных в слабощелочной среде, имеют более жесткую, но хрункую структуру. Смолы, синтезированные в присутствии едкого натра, придают пластикам лучшие прочностные свойства.

Трехмерная поликонденсация смол, синтезированных в при-

Таблица 4

Сравнение результатов испытаний образцов пластика по пределу прочности при статическом изгибе

Марка	Среднее						Разн	ость сре	дних по	отделі	ыным ур	овням				
смолы	арифме- тическое	A_{i}	$A_i - A_i$	$A_i - A_2$	$A_i - A_3$	$A_{i}-A_{4}$	$A_{i}-A_{5}$	$A_{l}-A_{6}$	$A_i - A_7$	$A_i - A_8$	$A_i - A_9$	A 1-A 10	$A_i - A_{ii}$	A 1-A12	AA18	A 1-A14
ФС	7,35,5	A_1	0	14,5	50.5	57,5	86,5	90,5	95,5	111,5	125,5	140,5	158,0	245,5	0055	200 5
C-1-50	721	A_2		0	36	43	72	76	81	97	111	126	143,5	231	285,5 271	302,5 288
СБС-1	685	A_3		1	0	7	36	40	45	61	75	90	107.5	190	235	252
249	678	A_4				0	29	33	38	54	68	83	100.5	183	228	245
C-1-30	649	A_5					0	4	9	25	39	54	71.5	159	199	216
228	645	A_6				-	-	0	5	21	35	50	67,5	155	195	212
C-35	640	A_7		за рав		средн	их		σ	16	30	45	62.5	150	190	207
21э	624	A_8		ается п		- 1-		-	1 -	0	14	29	46,5	134	174	191
101	610	A_{θ}	1	$\bar{x}_i - \bar{x}_j >$	$>t_{1-p}S$	0 / 2	٠,		100	0	0	15	32,5	120	160	177
22э	595	A_{10}				•		-				0	17.5	105	145	162
239	577,5	A_{11}	при	p=0,05	to.95 S	1/2	=29.3		- }				0	87,5	127,5	144,5
ФМ-2	490	A_{12}		,	- 0,00	V n	20,0	3 -						0	40	57
248	450	A_{13}	при п	=0,005	to 005 S	1/2	==-40 O	-		8					0	17
21×229	433	A_{14}	I I pur p	0,000	10,995	$0 \mid \frac{1}{n}$	-49,0								ı,	0

Сравнение результатов испытаний образцов пластика по пределу прочности при сжатии

			1				Разно	ость сре	дних по	отдель	ным ур	мкнас			1	
Марка смолы	Среднее арифме- тическое	A_{i}	$A_{i}-A_{1}$	A_1-A_2	AA3	A 1-A4	A i-As	$A_i - A_c$	A_1-A_7	$A_i - A_i$	$A_i - A_9$	$A_{i}-A_{10}$	$A_i - A_{ii}$	$A_{i}-A_{12}$	A ₁ -A ₁₃	A i-A1
	1070	A	0	30	70	80	80	1.20	150	300	410	430	440	470	490	820
ФС	1870	A_1	0	0	40	$\frac{-50}{50}$	50	90	120	270	380	400	410	440	460	790
228	1840	A_2		10	0	10	10	50	80	230	340	360	370	400	420	750
1×229	1800	A_3			U	0	0	40	70	220	330	350	360	390	410	740
19	1790	A_4				0	0	40	70	220	330	350	360	390	410	740
29	1790	A_5					0	0	30	180	290	310	320	350	370	700
39	1750	A_6	THE OTHER	l ooo bar	 	cne	дних	1 0	0	150	260	280	290	320	340	670
CBC-1	1720	A_7		еза раз гается і		Сро	2,11117		0	100	110	130	140	170	190	520
C-1-50	1570	A_8			•	1/2	2			.0	110	$\frac{100}{20}$	30	60	80	410
01	1460	A_9	x	$i - \overline{x_j} >$	t_{1-p} S	0 /-	,				"	0	10	40	60	390
249	1440	A_{10}				1/0	_						0	30	50	380
PM-2	1430	A_{11}	при	$\rho = 0.08$	5 to,95 S	$S_0 / \frac{2}{3}$	=47,						0	0	20	350
C-1-30	1400	A_{12}													0	330
248	1380	A_{13}	TDN /	0,005	tn 995	$S_0 1/2$	==78.	-			1	- 1			0	0
25	1050	A	mpn k	,,,,,,,	, ,,,,,,,,	V 1	ı				1			1		1

2,65

M	Среднее						Разн	ость сре	дних по	отдель	ным ур	мкиво				9E7/
Марка смолы	арифме- тическое	A_i	$A_i - A_1$	$A_{i}-A_{2}$	$A_{i}-A_{3}$	$A_i - A_4$	$A_i - A_5$	$A_{i}-A_{6}$	$A_i - A_7$	$A_{i}-A_{8}$	$A_i - A_9$	A ₁ -A ₁₀	$A_{i}-A_{11}$	$A_{i}-A_{12}$	$A_{i}-A_{13}$	A_{i} A_{ii}
C-35	7,48	A_1	0	1,37	1,40	1,61	1,76	1,81	2,03	2,31	2,56	2,73	2,90	3,16	3,20	3,77
C-1-30	6,11	A_2		0	0,03	0,24	0,39	0,44	0,66	0,94	1,19	1,36	1,53	1,79	1,83	2,40
C-1-50	6,08	A_3			0	0,21	0,36	0,41	0,63	0,91	1,16	1,33	1,50	1,76	1.80	2,37
ФМ-2	5,87	A_4				0	0,15	0,20	0,42	0,70	0,95	1,12	1,29	1,55	1.59	2,16
249	5,72	A_5					0	0,05	0,27	0,55	0,80	0,97	1,14	1,40	1,44	2,01
CBC-1	5,67	A_6				-		0	0,22	0,50	0,75	0.92	1,09	1,35	1,39	1,96
ФС	5,45	A_7		ва рав		сред	иих	70	0	0,28	0,53	0,70	0,87	1,13	1,17	1,74
101	5,17	A_8	отверг	ается п	ри	-1-		TO		0	0,25	0,42	0,59	0.85	0,89	1,46
248	4,92	A_9	x	$-\overline{x_i}>$	$t_{1-P}S$	0 /2	-,				0	0,17	0,34	0,60	0.64	1,21
228	4,75	A_{10}	100	- 3		V n			-			0	0,17	0,43	0,47	1,04
219	4,58	A_{11}	при п	=0,05	ti DS	1/2	=0,3	4					0	0,26	0,30	0,87
223	4,32	A_{12}	p., p	0,00	1-1-0	V n	- 0,0		14					0	0,04	0,61
239	4,28	A15	nou n	=0,005	f = ===	0 1/2	= 0.56	er.							0	0.57
21×229	3,71	A14	при р	บ.บบล	r 0,005 v	n	= 0,or	KI.		* Tel						0

Сравнение пластика на разных смолах по числу твердости

Разность средних по отдельным уровням Среднее арифме-тическое Марка A_i смолы $A_{i}-A_{11} |_{A_{i}}-A_{12} |_{A_{i}}-A_{13}$ $A_{i} - A_{14}$ 21×229 56,0 A_1 0 14,0 15,0 17,8 19,1 4,7 19,2 20,1 20,2 23,2 23,8 24.0 30,5 31,6 239 51,3 10,3 A_2 9,3 13,1 14,4 14,5 15,4 15,5 18,5 19,1 20,3 25,8 26,9 ФС 42,0 A_3 0 1,0 3,8 5,1 5,2 6,1 6,2 9,8 9,2 11,0 16,5 17,6 228 41,0 2,8 A_4 4,2 4,1 5,1 5,2 8,2 8,8 10,0 15,5 16,6 C-1-30 38.2 A_5 1,4 2,3 1,3 2,4 5,4 6,0 7,2 12,7 13,8 249 36.9 A_6 0,1 1,0 1,1 4,1 4,7 5,9 11,4 12,5 гипотеза равенства 219 36.8 A_7 0,9 1,0 4,0 4,6 5,8 11,3 12,4 отвергается при 223 35.9 A_8 0,13,1 3,7 4,9 10,4 11,5 $\overline{x_i} - \overline{x_j} > t_{1-P} S_0 \sqrt{\frac{2}{n}},$ CBC-1 35.8 A_9 3,0 3,6 4,8 10,3 11,4 C-1-50 32.8 A_{10} 0 0,6 1,8 7,3 8,4 при $p=0.05 \ t_{0.95} \ S_0 \ \sqrt{\frac{2}{n}} = 3.2,$ $\Phi M-2$ 32.2 A_{11} 0 1,2 6,7 7,8 101 31,0 A_{12} 5,5 6,6 при $p = 0.005 \ t_{0.995} \ S_0 \sqrt{\frac{2}{n}} = 5.34.$ C-35 25.5 A_{13} 1,1 A_{14} 24.4 0

Таблица 6

Водопоглощение композиционного древесного пластика, изготовленного на разных смолах

- Марка смолы	30 мин	1.9 (1.7)	3.00 3 4 cm 2	1-еутки за	2 суток	4 cyrok	6 суток	10 суток	15 cyrox	30 cyrok
223	08	0,195	0.00,195	0,713	0,973	1,101	1,620	1,750	2,40	2,40
21×229	0.00	0,394	0,394	0,726	0,982	0,982	1,378	1,702	2,29	2,29
219	0	0,246	0,246	0,925	1,476	1,476	2,09	2,46	3,08	3,08
228	08,58	0,525	0,525	0,985	1,116	01,379	1,905	2,363	3,02	3,98
239	0.25	0,685	0,871	1,058	1,403	1,618	2,116	2,427	3,049	3,92
ΟΦ	0)	0,365	0,365	1,062	1,579	1,82	2,185	2,67	3,28	3,28
CBC-1	5 0,311	0,480	0,622	101,4928	2 12,113	2,672	3,729	4,229	5,283	66'9
249	0,179	0,715	0,953	1,909	2,383	3,516	3,990	4,770	5,744	7,83
C-1-30	0,729	1,334	1,820	3,430	6,01	8,20	9,79	10,74	11,05	11,50
C-1-50	0,242	0,904	1,325	3,434	5,03	7,33	9,21	10,78	11,98	12,10
248	0,637	1,21	1,74	4,713	6,11	6,31	8,26	5,99	6,18	6,50
101	1,03	1,44	2,05	5,206	7,26	9,46	13,19	13,78	14,38	14,38
C-35	2,45	3,32	4,20	8,27	11,6	17,3	20,2	22,9	24,8	26,0

пость отверждения и молекулярная структура полученных смолиределяются не только способностями резольной смолы, но зависит и от низкомолекулярных примесей. Смолы, полученные на основе фенола с фенольными отходами, имеют большое количество инзкомолекулярных веществ, осложняющих структуру отвержденного полимера, жестко отвержденные макромолекулярные составные части которого окружены более мягкими промежуточными веществами, поглощающими удар. Известно, что избыток щелочи, остающийся в продуктах реакции, снижает водостойкость пластика, и, наоборот, пластики на основе смол 219, 229, 21×229, 228, 239 более водостойки — суточное водопоглощение их меньше 1,5%, а предельное — до 4%.

Таким образом, установлена статистическая достоверность возможности замены связующих СБС-1, С-35 в производстве композиционных древесных пластиков другими фенолформальдегидными смолами и фенолоспиртами, позволяющими получить пластики с высокими физико-механическими свойствами с экономическим ффектом. Кроме указанного, эти данные позволяют получать пластики с заранее заданными свойствами. Так, если нужен материал высокими статическим изгибом и ударной вязкостью, можно использовать смолы ФС, С-1-50, С-1-30, 249, СБС-1, для получения материала с лучшим сопротивлением сжатию и твердостью — смолы ФС, 228, 21×22э, 21э, 22э, 239, СБС-1, для получения материала с меньшим водопоглощением — связующие 22э, 21×22э, 21э, 228, 239, ФС.

The control of the same of the

rekleg frans og sk. – kregnitte stånase – grava. Bosta fransk til 2000 – til 2000 Del ar vivarient – til 2000 – til

The complete and the control of the

эйжнэг Инициан этогиндсэн ош дэнг гисэн эр нагий эр н ээлнэлгийн ханг эхи

and the Anguiness some common a size part and any