УДК 504.75

В. С. Волобуев

кандидат физико-математических наук, доцент

Э. М. Эминов

магистрант

Учреждение образования «Белорусский государственный технологический университет»

ПОЛИМЕТИЛМЕТАКРИЛАТ В ВОДАХ ВИЛЕЙСКО-МИНСКОЙ ВОДНОЙ СИСТЕМЫ

В работе проведено исследование на содержания частиц микропластика и микроволокон в воде реки Свислочь. **Ключевые слова:** отбор микрочастиц, исследование, очистка воды.

V. S. Volobuev

PhD, Phys.-Math, Associate Professor

Э. М. Эминов

Master's Degree Student

Educational institution "Belarusian State Technological University»

POLYMETHYL METHACRYLATE IN THE WATERS OF THE VILEIKA-MINSK WATER SYSTEM

In this paper, a study was conducted on the content of microplastic particles and microfibers in the water of the Svisloch River. **Keywords:** the selection of microparticles, the study, purification of water.

Оценка состояния, мониторинг и исследование состояния водных ресурсов в Республике Беларусь в настоящее время приобретает особую актуальность. На протяжении последних десятилетий, ввиду появления и широкого использования новых искусственных (неприродных) материалов и пластмасс наблюдается серьезное антропогенное воздействие на различные реки, озера и другие водные источники и ресурсы страны [1]. Одним из таких материалов является полиметилметакрилат (ПММА). Полиметилметакрилат (органическое стекло) – синтетический виниловый полимер метилметакрилата, термопластичный прозрачный пластик. Органическое стекло или полиметилметакрилат нашел широкое применение в строительстве, производстве, медицине и других областях, благодаря ряду преимуществ, по сравнению с классическими светопрозрачными материалами [2]. Полиметилметакрилат содержится в косметических средствах таких как помада и тональные крема. Полиметилметакрилат попадает в природные воды путем сброса бытовых сточных вод.

При попадании на кожу или во внутрь организма ПММА может вызывать различные аллергические реакции и ослабить иммунитет. ПММА может существовать в виде микрочастицы. Незначительный размер – менее 5 мм. в диаметре, означает, что он может быть поглощен большим разнообразием видов, чем более крупные пластиковые предметы; это начинается с планктона и заканчивается людьми. В телах живых организмов может нанести значительный ущерб внутренним органам. Кроме того, подобно миниатюрному троянскому коню, они переносят опасные химикаты, которые затем могут накапливаться в пищевой цепи [3].

В данный момент наблюдается проблема идентификации полимерных микрочастиц в воде. Их трудно обнаружить ввиду необходимости:

- 1) фильтрация большого количества воды;
- 2) очистка частиц от примесей (песок и т.д.).

Цель данной работы — доказать наличие микрочастиц синтетических полимеров в воде, и как следствие постановки вопроса о дополнительных мероприятиях по очистке воды для питьевых нужд. Такое подтверждение может стать отправной точкой для внесения показателя наличия полимерных микрочастиц в соответствующие ГОСТы по водоподготовке.

Для определения количественного содержания частиц микропластика в отобранных пробах из реки Свислочь отобрано и отфильтровано 40 дм³ воды. Отбор проб был в следующих местах:

- 1) водохранилище Дрозды (начало города);
- 2) центр города;
- 3) микрорайон Шабаны (конец города).

После этого было произведено фильтрование $40~{\rm дм^3}$ воды. Для фильтрования использовался специальный однослойный фильтр на $100~{\rm мкм}$. После проведения данной части анализа, образцы были обработаны на определение точного содержания частиц микропластика и синтетических волокон на кафедре $\Phi XMC\Pi$ «Белорусского государственного технологического университета». Использовался метод оптической микроскопии с использованием микроскопа MBC-10. Полученные результаты представлены в таблице 1~[4].

Из таблицы 1 видно, что по мере прохождения реки Свислочь через Минск количество микрочастиц и микроволокон увеличивается, что может быть обусловлено их занесением через сбросы сточных вод и вторичным микропластиком.

Содержания частиц микропластика и микроволокон в воде реки Свислочь на 1дм³

Место отбора	Количество	Количество
	синтетических микрочастиц	синтетических микроволокон
водохранилище Дрозды	0,68	0,58
р. Свислочь (центр города)	1,63	0,98
Микрорайон Шабаны (конец города)	2,2	1,88

Для проведения качественного анализа, образцы были переданы в Центр физико-химических методов исследования БГТУ на ИК-спектроскопию которая позволяет идентифицировать исследуемый полимер путем сравнения соответствующих спектров (заборного образца с эталонным).

Спектр полиметилметакрилата представлен на рисунке 1

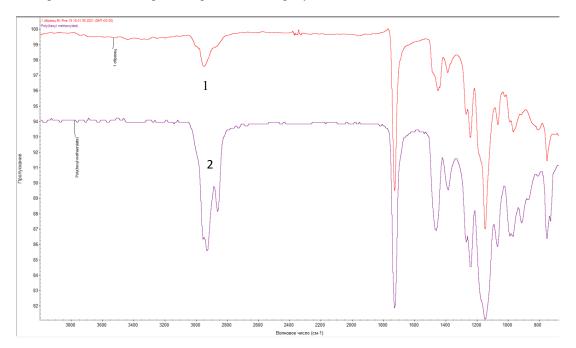


Рис. 1. Сравнение ИК-спектраПММА со спектром образца

Из рисунка 1 видно, чтополученный спектр образца представлен под №1, эталонный спектр представлен под №2. Спектр образца №1 совпадает с полученным спектром образца исследуемого материала №2, что свидетельствует о присутствии ПММА в образце.

Был произведен отбор микрочастиц в Вилейско-минской водной системе. По результатам количественного анализа было установлено, что по мере протекания реки Свислочь через Минск, количество частиц микропластика возросло в 3,24 и волокон так же в 3,24 раза. При помощи ИК-спектроскопии доказано наличие ПММА, возможно, что есть и другие полимеры, но пока на данный момент удалось зарегистрировать только ПММА.

Наличие частиц ПММА свидетельствует о серьезном антропогенном воздействии по загрязнению водных ресурсов Вилейско-минской водной системы.

Библиографический список

- 1. Казмирук, В. Д., Казмирук Т. Н. 2017. Микропластик в донных отложениях: методы определения. Вода: химия и экология. 1: 87-92.;
- 2. С. И. Маракулин, А. А. Серцова, Е. В. Юртов. Термические свойства светопрозрачных композиционных материалов на основе полиметилметакрилата.
 - 3. Китаева Ф. С, Гумашвили И. Р. Микропластик в океане: происхождение и вред.
- 4. Литвинюк Д.А., Сахонь Е.Г., Багаев А.В. Методика отбора проб, сепарации и количественного учета частиц микропластика в поверхностных водах, 2 с.