грязнения. Только в 2010 г. Гомельским химзаводом реализовано лесохозяйственным предприятиям страны для целей борьбы с лесными пожарами 50 тонн « Метафосила». Химический состав используется для создания профилактических атмосфероустойчивых заградительных полос длительного действия (35-40 суток) и ликвидации пожаров. Водные рабочие растворы данного состава обладают высокой огнетушащей и сорбционной способностью к радионуклидам ¹³⁷Cs и ⁹⁰Sr, являющимися основными радиоактивными загрязнителями лесных экосистем и продуктов сгорания при пожарах, что обеспечивает радиационную безопасность людей при тушении пожаров и ликвидации их последствий.

Таким образом, успешность охраны лесов от пожаров на загрязненных радионуклидами территориях может быть обеспечена только на основе применения высокоэффективных методов и средств их профилактики раннего обнаружения и оперативной ликвидации.

УДК 630*432:504.05

ПОЖАРОУСТОЙЧИВОСТЬ ЛЕСНЫХ ФОРМАЦИЙ НА ЗАГРЯЗНЕННОЙ РАДИОНУКЛИДАМИ ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ

Усеня В.В., Чурило Е.В., Соломкина Е.А.

ГНУ «Институт леса НАН Беларуси» Беларусь, 246001, Гомель, ул. Пролетарская, 71 e-mail: instlesnanb@gmail.com

Пожары из множества природных и антропогенных факторов оказывают доминирующее негативное влияние на состояние и динамику лесных фитоценозов. На радиоактивно загрязненных лесных землях последствия пожаров могут ухудшить экологическое состояние прилегающих обширных регионов, что является серьезной международной проблемой.

На территории наиболее загрязненной радионуклидами в результате аварии на ЧАЭС Гомельского и Могилевского ГПЛХО только в 1995-2010 гг. пройденная пожарами площадь составила 25,5 тыс.га. В лесном фонде Полесского государственного радиационно-экологического заповедника (30 километровая зона отселения и отчуждения ЧАЭС белорусской территории) на протяжении 1990-2010 гг. лесные пожары отмечены на площади 9,2 тыс. га (рисунок).

Пожароопасность лесных площадей определяется их пирологической характеристикой, которая зависит от типологических, возрастных и структурных характеристик лесных насаждений.

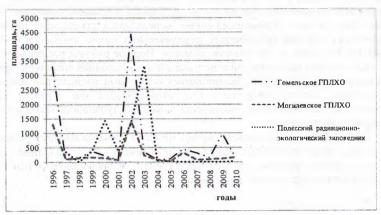


Рисунок 1 — Площадь загрязненной радионуклидами лесной территории, пройденной пожарами

Природная пожарная опасность лесного фонда находится в непосредственной зависимости с определенными типами и группами типов леса, которые определяют количественный и качественный состав лесных горючих материалов, а полнота и местоположение насаждения характеризуют условия созревания горючих материалов и их последующую интенсивность горения. Тип леса обусловливает как формирование основных проводников горения, так и необходимые погодные условия для возникновения лесного пожара на конкретном участке древостоя.

Породная структура загрязненных радионуклидами лесов показывает, что среди них преобладают сосновые молодняки и средневозрастные насаждения, произрастающие на автоморфных почвах, а среди них наиболее представительными являются пожароопасные мшистая, вересково-брусничная и лишайниковая группы типов леса. На загрязненных радионуклидами землях также имеются значительные площади мелиорированных торфяников и сосновых насаждений на осушенных землях, которые отнесены к наиболее высоким I-III классам природной пожарной опасности лесов.

Горимость лесов различных регионов страны зависит, в первую очередь, от погодных условий на их территории в период пожароопасного сезона, класса природной пожарной опасности лесов, степени их антропогенной нагрузки и целого комплекса других природных и антропогенных факторов.

Анализ горимости лесов различных областей Республики Беларусь показал, что на протяжении последнего десятилетия наиболее горимыми явились леса Витебской и Гомельской областей, наименее — Минской (таблица 1).

Область	Терри-	Плотность	Террито-	Средний	Плот-	Гори-	
	тория,	населения,	риальная	класс при-	ность	мость	
	тыс. км2	чел./км ²	плотность	родной	лесных	лесов	
			лесов,	пожарной	пожаров		
			км ² /км ²	опасности			
Брестская	32,8	44,4	0,423	2,4	1,600	0,00080	
Витебская	40,0	32,7	0,439	2,7	0,426	0,00730	
Гомельская	40,4	37,0	0,557	2,2	0,423	0,00453	
Гродненская	25,1	45,2	0,383	1,9	1,596	0,00125	
Минская	40,2	80,8	0,427	2,1	2,452	0,00055	
Могилевская	29,1	39,8	0,398	2,3	0.740	0,00155	

Нами выполнена сравнительная оценка пожароустойчивости различных лесных формаций на загрязненной радионуклидами территории восьми лесохозяйственных учреждений Гомельского и Могилевского ГПЛХО, которая обусловлена индивидуальной огнестойкостью растений, входящих в фитоценоз, особенностями структуры (вертикальной расчлененностью и горизонтальной мозаичностью) фитоценоза, густотой и сомкнутостью ярусов в древостое.

Анализ распределения площади пожаров в различных лесных формациях показывает, что на протяжении последнего десятилетия наиболее горимыми являются сосновые насаждения, на долю которых в различные годы приходилось от 80,2 до 100 % от общей площади пожаров (таблица 2).

Таблица 2- Линамика плошали пожаров в различных лесных формациях

Годы	Площадь пожаров, %							
	в том числе							
	Сосна	Береза	Ольха черная	Ель	Осина			
2001	84,3	6,7	-	9,0	-			
2002	83,2	11,4	5,1	0,2	0,1			
2003	80,2 10,9),2 10,9	0.8	0,2	7,9			
2004	88,3	2,4	5,7	3,6	-			
2005	81,8	81,8 10,6	1,1	6,5	-			
2006	93,8	2,9	3,0	0,3	-			
2007	98,9	1,1	-	-	-			
2008	94,4	-	-	5,6	-			
2009	98,3	98,3	-	1,7	-			
2010	100	-	-	-	-			
В среднем	90,3	4,6	1,6	2,7	0,8			

Анализ распределения площади пожаров в сосновых фитоценозах различных типов леса свидетельствует о том, что их наибольший удельный вес наблюдается в сосняках мицистых (87,7%) и вересковых (5,1%) (таблица 3).

Таблица 3 - Распределение площади пожаров в сосновых фитоценозах различных типов леса

Годы	ы Площадь пожаров по типам леса, %							
	Мш.	Bep.	Op.	Чер.	Кис.	Дм.	Оссф.	Баг.
2001	72.1	27,6		-	-	-	-	-
2002	96,1	0,2	0,4	1,0	0,1	0,7	1,3	1,3
2003	92.5	-	6,6	0,8	-	-	-	
2004	96,7	0,4	2,4	0,5	-		-	-
2005	84,0	15,1	0,8	-	-	-	-	-
2006	89,3	1,9	7,9	0,3	0,6	80	-	-
2007	82,3	3,9	11,1	-	_ %	-	2,7	2,7
2008	89,4	0,8	8,1	1,6	-	-	- 0	-
2009	67,6	0,7	8,3	4,5	5,4	-	- 1	-
2010	100	-	-	-	-	-	-	-
В	87,7	5,1	4,6	0,9	0,6	0,1	0,5	0,5
сред- нем								16

Таким образом, многолетняя динамика лесных пожаров на загрязненных радионуклидами территориях Беларуси свидетельствует о том, что в силу своих пирологических характеристик наименее пожароустойчивыми являются сосновые формации. В связи с этим, необходима разработка системы мероприятий по противопожарному обустройству сосновых фитоценозов, а также методов и технологий повышения их пожароустойчивости.

