## Я.Ю. Журавлева, магистрант (БГТУ, г. Минск) ЭЛЕКТРОТРАНСПОРТ В ДВОЙНЫХ ПЕРОВСКИТАХ Nd(Ba,Mg)(Fe,Co,Cu)<sub>2</sub>O<sub>5+δ</sub>

Слоистые кислороддефицитные перовскиты LnBaMe'Me"О<sub>5+δ</sub> (Ln – редкоземельный элемент (РЗЭ), Me', Me" – 3*d*-металлы) характеризуются комплексом особых свойств, наиболее значимыми из которых являются высокие значения электропроводности и коэффициента термо-ЭДС, а также содержат в своей структуре т.н. слабосвязанный кислород (б), что позволяет рассматривать их как электродные материалы для твердооксидных топливных элементов, высокотемпературные термоэлектрики, материалы химических полупроводниковых сенсоров газов, катализаторы окисления углеводородов и т.д. [1]. Методами варьирования катионного состава слоистых перовскитов можно в значительной степени влиять на свойства получаемой керамики. Ранее нами было изучено влияние частичного замещения бария стронцием в NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub> на электротранспортные и термические свойства этой структуру, фазы [2], в настоящей работе исследованы магний-замещенные производные NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub>.

Образцы NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0,5</sub>Cu<sub>0,5</sub>O<sub>5+ $\delta$ </sub> (x = 0,00; 0,05; 0,10; 0,20; 0,40) получали по стандартной керамической технологии из Nd<sub>2</sub>O<sub>3</sub> (HO-Л), BaCO<sub>3</sub> (ч.), MgCO<sub>3</sub> (ч.), Fe<sub>2</sub>O<sub>3</sub> (ос.ч.), CuO (ч.д.а.), Co<sub>3</sub>O<sub>4</sub> (ч.) которые смешивали в заданных стехиометрических соотношениях при помощи мельницы Pulverizette 6.0 фирмы Fritsch, прессовали и отжигали на воздухе в течение 40 ч при 1173 К. Спеченные образцы подвергали повторному перетиранию и прессованию, после чего спекали на воздухе при 1273 К в течение 9 часов.

Полученные образцы, в пределах погрешности рентгенофазового анализа (дифрактометр Bruker D8 XRD Advance, CuK<sub>a</sub>–излучение), были однофазными (рисунок 1) и имели тетрагональную структуру (пр. гр. симм. Р4/тт). Как видно из данных таблицы 1, параметры элементарной ячейки менялись В пределах a = 3,910 - 3,915 Å, c = 7,708 - 7,729 Å, причем параметр a с ростом x практически не с несколько возрастал, что объясняется менялся, a параметр уменьшением содержания в образцах  $\delta$ : от 0,72 для x = 0,00 до 0,51 для x = 0.40(определено методом иодометрического титрования). Кажущаяся образцов, рассчитанная массе плотность ПО ИХ и геометрическим размерам, изменялась в пределах 4,43-6,17 г/см<sup>3</sup>,

394

уменьшаясь с ростом степени замещения бария магнием. Пористость образцов составила 8,3–32,7%.



Рисунок 1 – Рентгеновские дифрактограммы порошков твердых растворов NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0,5</sub>Cu<sub>0,5</sub>O<sub>5+δ</sub>: x = 0,00 (1); 0,05 (2), 0,10 (3), 0,20 (4), 0,40 (5)

Таблица 1 – Параметры кристаллической структуры (*a*, *c*, *V*), степень тетрагонального искажения (*c*/2*a*), кажущаяся плотность ( $\rho_{\text{каж}}$ ) и пористость (П) твердых растворов NdBa<sub>1</sub> "Mg<sub>x</sub>FeCo<sub>0</sub> <sub>5</sub>Cu<sub>0</sub> <sub>5</sub>O<sub>5+8</sub>

|      | и периетеени (п) пвердый распверев и ава $I=x^{1/2}$ Ви есе $0, 5 \in 40, 5 \in 5+0$ |                   |                   |        |                                         |      |
|------|--------------------------------------------------------------------------------------|-------------------|-------------------|--------|-----------------------------------------|------|
| x    | a, Å                                                                                 | <i>c,</i> Å       | V, Å <sup>3</sup> | c/2a   | ρ <sub>каж</sub> ,<br>г/см <sup>3</sup> | П, % |
| 0,00 | $3,914 \pm 0,001$                                                                    | $7,708 \pm 0,001$ | $118,1 \pm 0,004$ | 0,9847 | 6,17                                    | 8,3  |
| 0,05 | $3,912 \pm 0,002$                                                                    | $7,712 \pm 0,005$ | $118,0 \pm 0,187$ | 0,9857 | 4,89                                    | 26,7 |
| 0,10 | $3,910 \pm 0,002$                                                                    | $7,710 \pm 0,006$ | $117,9 \pm 0,207$ | 0,9859 | 4,43                                    | 32,7 |
| 0,20 | $3,914 \pm 0,002$                                                                    | $7,715 \pm 0,002$ | $118,2 \pm 0,178$ | 0,9856 | 4,44                                    | 30,7 |
| 0,40 | $3,915 \pm 0,002$                                                                    | $7,729 \pm 0,006$ | $118,5 \pm 0,231$ | 0,9871 | 4,43                                    | 27,1 |

Как видно из рисунка 2, электропроводность полученных материалов, измеренная на воздухе в интервале температур 300-1100 К, вблизи комнатной температуры носила полупроводниковый  $(\partial \sigma / \partial T > 0)$ , а при повышенных температурах – металлический  $(\partial \sigma / \partial T < 0)$  характер, проходя через максимум вблизи 660–730 К. Значения коэффициента термо-ЭДС керамики во всем интервале температур были положительными. На температурной зависимости коэффициента термо-ЭДС вблизи 630–700 К наблюдался минимум. Наличие экстремумов на температурных зависимостях удельной электропроводности и коэффициента Зеебека обусловлено

395

выделением из образцов слабосвязанного кислорода. В целом, значения электропроводности керамики NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub> уменьшались, а коэффициента термо-ЭДС – возрастали при увеличении степени замещения бария магнием.



Рисунок 2 – Температурные  $(a, \delta)$  и концентрационные (e, c)зависимости удельной электропроводности (a, e) и коэффициента термо-ЭДС  $(\delta, c)$  керамики состава NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0,5</sub>Co<sub>0,5</sub>O<sub>5+ $\delta$ </sub>: x = 0,00(1); 0,05 (2), 0,10 (3), 0,20 (4), 0,40 (5)

Величины кажущейся энергии активации проводимости  $(E_{\sigma})$ , активации носителей заряда  $(E_S)$ , активации миграции носителей  $(E_m)$  рассчитывали по методикам, приведенным в [2]. Как видно из данных, представленных в таблице 2, значения указанных параметров электропереноса керамики NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> мало изменяются при варьировании ее катионного состава.

Исходя из полученных значений удельной электропроводности и коэффициента термо-ЭДС по методике [3] были рассчитаны значения взвешенной подвижности носителей заряда ( $\mu_B$ ), а при помощи уравнения  $\sigma = e \cdot n \cdot \mu_B$  (e - 3аряд электрона) – значения концентрации носителей заряда («дырок») (n). Было установлено, что в интервале температур 400–700 К значения  $\mu_B$  изменяются в пределах 0,1–0,7 см<sup>2</sup>/(В·с) (рисунок 3), уменьшаясь при возрастании температуры и слабо изменяются при варьировании катионного состава образцов. Концентрация носителей заряда в NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> в том же интервале температур изменялась в пределах (4–250)·10<sup>19</sup> см<sup>-3</sup>, возрастая при увеличении температуры и уменьшаясь при увеличении степени замещения бария магнием.

Таблица 2 – Значения кажущейся энергии активации электропроводности ( $E_{\sigma}$ ), энергии возбуждения ( $E_{S}$ ) и переноса ( $E_{m}$ ) носителей заряда в твердых растворах NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+ $\delta$ </sub>

| посителен заряда в твердых растворах $\operatorname{ruba}_{1-x}\operatorname{ruba}_{1-x}$ |      |                     |                |            |  |  |  |  |
|-------------------------------------------------------------------------------------------|------|---------------------|----------------|------------|--|--|--|--|
|                                                                                           | x    | Е <sub>σ</sub> , эВ | <i>Еs</i> , эВ | $E_m$ , эВ |  |  |  |  |
|                                                                                           | 0,00 | 0.254               | 0.048          | 0.206      |  |  |  |  |
|                                                                                           | 0,05 | 0.213               | 0.049          | 0.164      |  |  |  |  |
|                                                                                           | 0,10 | 0.194               | 0.042          | 0.152      |  |  |  |  |
|                                                                                           | 0,20 | 0.218               | 0.060          | 0.158      |  |  |  |  |
|                                                                                           | 0,40 | 0.227               | 0.060          | 0.167      |  |  |  |  |



Рисунок 3 – Температурные зависимости концентрации (*a*) и взвешенной подвижности носителей заряда ( $\delta$ ) керамики состава NdBa<sub>1-x</sub>Mg<sub>x</sub>FeCo<sub>0,5</sub>Co<sub>0,5</sub>O<sub>5+ $\delta$ </sub> x = 0,00 (1); 0,05 (2), 0,10 (3), 0,20 (4), 0,40 (5)

## ЛИТЕРАТУРА

1. Klyndyuk A.I., Chizhova E.A., Kharytonau D.S., Medvedev D.A. Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells // Materials. 2022. V. 15. № 1. P. 141.

2. Klyndyuk A.I., Zhuravleva Ya.Yu., Gundilovich N.N. Crystal structure, thermal and electrotransport properties of NdBa<sub>1-x</sub>Sr<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> ( $0.02 \le x \le 0.20$ ) solid solutions // Chimica Techno Acta. 2021. V. 8. N. 3. P. 20218301.

3. Snyder G.J., Snyder A.H., Wood M., Gurunatham R., Snyder B.H., Niu C. Weighted Mobility // Adv. Mater. 2020. V. 35. P. 200153.