ИЗУЧЕНИЕ ЭЛЕКТРОННО-СТРУКТУРНЫХ, РЕАКЦИОННЫХ И КООРДИНАЦИОННЫХ СВОЙСТВ ГЛЮТАМИНА

Одним из соединений с разнообразными реакционными свойствами и способов координации является глютамин, содержащий одинаковый набор (C, H, N, O) атомов, но в составе разных функциональных групп, таких как α -аминокарбоксильной — $CH(NH_2)COOH$ и γ -карбоксиамидной — $C(O)NH_2$ групп. Из-за наличий этих групп глютамин, как одна из двух амидо-аминокислот, участвует в многих биохимических процессах как другие жизненно важные ее аналоги.

К выяснению причины совокупность проявляемых выше указанных свойств глютамином посвящено данное сообщение, предусматривающее изучение электронных, конформационных особенностей и химических свойств функциональных групп методом КХР. Кванто-химические расчеты выполнены с применением программы Gaussian 09 методом теории функционала плотности (DFT) с гибридным функционалом B3LYP.

Рис 1. а – протонированная (катионная); б, г – цвиттер-ионная (бетаиновая); в- нейтральная; д – депротонированная (анионная) формы глутамина

Известно, что глютамин в зависимости от рН-среды может находиться в протонированной, нейтральной, цвиттер-ионной и депротонированной формах (Рис 1 а-д). С учетом этой особенности

для выяснения реакционной способности глютамина в выше указанных формах использовали значений распределения атомных зарядов по Малликену и полярности связей в АГ и α-АКГ (табл.1).

В целом, сравнение суммарного отрицательного заряда на атомах в АГ и α -АКГ показывает, что в зависимости от условия (pH) разница зарядов атомов α -АКГ в $GlnH_2^+$ на 2,04 (45,7%) и в $GlnH_2^+$ на 0,663 у.е. (15%) больше, чем на атомах АГ. В случае Gln_1^+ анионе разница суммы зарядов имеет обратный характер, т.е. в АГ на 1.115 у.е. (26%) больше, чем в α -АКГ. В зависимости от условия, по активности α -АКГ формы глутамина располагаются в ряд $GlnH_2^+$ > $GlnH_1^+$ > > Gln

Таблица 1. Результаты кванто-химических расчетов молекулы глутамина в различных формах в зависимости от рН среды

тлутамина в различных формах в зависимости от ртг среды														
Соеди-	Распределение зарядов по Малликену на атомах													
нение	AM	идн	ая гј	эуппа (ΑΓ)		α-Аминокарбоксильная группа (α-ΑΚΓ)							
	N		C ⁵		О	N		C^2		C^1	Oa		Op	
GlnH ₂ ⁺	-0.726942		+ 0,508681		-	-0.7242	295	-0.1	11286	+0.504891	-0.51	1691	-0.347007	
					0.399998	;								
GlnH	-0,757689		+ 0,503525		-	-0,661	833	3 -0,071920		+0,517055	-0.536655		-0.398075	
					0,442501									
Gln ⁻	-0,742167		-0,47	76636	-0,485643	-0,655	5043 -0		74672	+0,430713	-0,583	3036	-0,566255	
	Σ Электронных плотностей / Полярность (Δ –зарядов атомов)													
	Связе	й фр	агмента амидной			Связей α-аминокарбоксильного фрагмента (α-АКГ)								
		гру	уппы (АГ)			1 11 \								
	O=C<	C-	N	N–H ^a	N-H ^b	H–OC	но)_C	>C=O	O-C-O	C^3 – C^4	$C^3 - N$	$I-H^c/N-H^d/$	
	0 0 1	C-	-1 V	1/-11	14-11	11–00	110-0		-C-O	0-0-0	C -C	C -1V	N-H ^e	
$GlnH_2^+$	12,64/	11,9	97/	_	ĺ	/	/		/			/	-1,16/-	
	-0,908	-1,2				-0,780	-0,850	850	-1,020	-	/ +0,620	0,836	1,16/	
	,	ĺ						-1,020			0,050	-1,15		
GlnH	12,72/	11,9		7,74/	7,71/	/	,	/	/	_	/	/	-1,13/	
	-0,946	-1,2	_	-1,180		-0,910	-0,9	915	-1,054		+0,600	-0,600		
Gln ⁻	12,84/	12,	13/	7,85 /	7,83 /	_	Ι.	_	_		/	/	-0,919 /	
	-0,962 -1,		220 -1,050		-1,035	_	_			/-1,15	+0,505	-0,667	-0,921/ -	

При изучении комплексообразующих свойств глутамина в качестве полидентатного лиганда с разонобразными способами учесть координации, видимо, необходимо совокупности электронные и структурные составляющие взаимодействия «ион металла-лиганд». В амидной группе потенциально донорные атомы N и О расположены в достаточно близком между собой расстоянии, но с наибольшим суммарным отрицательным зарядом в малом объеме. sp^2 пространственном Так как, строгая геометрия гибридизированных электронных орбиталей атома Самил обусловливает находится атомов N и O между собой на расстояние 120° в амидной группе. В случае протонизации амидного атома азота в цвиттер-ионные формы (рис1-г) ситуация еще усугубляется образованием $\mathrm{NH}^{+}_{3(\mathrm{амид})}$. По причине вышеуказанных особенностей для атомов N и O AГ наиболее выгодным является не партнерство в координировании, а наоборот проявление монодентатности либо через атом N, либо через атом O, или, в крайном случае, вовсе не участвовать в ДАВ с образованием очень неустойчивого четырехчленного металлоцикла.

Подтверждением этих теоретических предположений могут служить эксперимен-тальные результаты изучения синтезированных комплексов оксованадия(+4) с глютамином. В зависимости от рН среды синтезированы молекулярные комплексы ацетата VO⁺² состава $[VO(GlnH)_2H_2O](CH_3COO)_2$ (I) глютамином $[VO(GluH)_2H_2O](CH_3COO)_2$ (II) с глутаминовой кислотой при рН = 4,5-5,5 в водной среде и их внутри комплексные соединения состава [VO(Gln)₂H₂O] (III) и [VO(Gln)₂H₂O] (IV) при рH=7,5-8,5 в спиртовой среде. По результатам ИК-спектральных исследований установлено, что аминокислоты в I, II комплексах находятся в ионизированном состоянии (-COO⁻) и аминогруппы в NH₃⁺ состоянии. В соединении II глутаминовая кислота координирована через двух атомов кислорода α-СОО группы бидентатно-циклически, а α-NH₂ группа находится в форме NH₃⁺, по этому координационный узел комплекса состоит из [VO(O₄)] набора атомов, что доказано методом ЭПР спектроскопии $(A=104~3, g=1,966, \alpha^2=0.81)$ в диметилсуль-фоксидном (ДМСО) растворе. В отличие от этого, комплекс I имеет ЭПР параметры А=97 g=1.971 $\alpha = 0.76$ которые указывают на присутствие координационной сфере атомов кислорода и азота в экваториальной плоскости состава $[VO(O_2; N_2)]$ и для объяснения этой разницы было сделано предположение, что в координации в данном случае вступает амидная группа глютамина и не было выяснено, почему атомы O и N амидной группы, а не атомы α -аминокарбоксилатной группы [1].

Сопоставление ЭПР спектров комплексов I, III и IV ДМСО растворов указывает на их одинаковые параметры: A = 97 Э, g = 1,971, $\alpha = 0,76$, (I); A = 96 Э, g = 1,971, $\alpha = 0,75$ (II) и A = 97 Э, g = 1,971, $\alpha = 0,76$ (IV). Эти параметры свидетельствуют о том, что в молекулярном комплексе глютамина и в внутрикомплексных (III и IV) соединениях координационный узел состоит из $[VO(O_2; N_2)]$, т.е. в I и III комплексах глютамин координирован одними и теми же атомами через N и O α -аминокарбоксилатной группы. Это означает, что при pH = 5-6 молекула глютамина находится в виде цвиттер-иона, но лишь

той разницей, что ион H^+ от α - COOH группы перемешается к амидной NH_2 группе, а не к α - NH_2 . Благодаря этому α - NH_2 остается нейтральной и вместе с атомом О COO-группы как в молекулярном, так и внутрикомплексных комплексах образуют одинакового состава металлоцикла.

R=-CH₂-CH₂-COOH, II и IV.

 $R = -CH_2 - CH_2 - C(O)NH^{+3}$, I.

 $R = -CH_2 - CH_2 - C(O)NH_2$, III.

На вопрос почему глутаминовая кислота не способна координироваться как молекула глютамина в составе комплекса II становится ясным, потому, что в её молекуле не имеется вторая NH_2 -группа, способная присоединить (наоборот имеется вторая β -COOH группа), мигрирующего иона H^+ от α -COOH к α -NH $_2$ группе.

Отметим что в [1] для I комплекса была предположена координация через атомы N и O амидной группы глютамина, выяснить вопроса почему это так, тогда не было возможным. Теперь, благодаря КХР, стало возможным исправлять ошибочного предположения и установить действительный способ координации молекулы глютамина, т.е. участие атомов N и O α -АКГ в образовании связей M-L молекулярном комплексе (I).

Следовательно, из этого вытекает вывод, что амидная NH₂ группа, при образовании цвиттер- ионной формы, обладает большей основности, чем α-NH2 группа глютамина. Исходя из этого можно заключить, ЧТО в молекулах основных аминокислот вторая аминогруппа (лизин), гуаниновая группа (аргинин), гетероциклические атомы азота (гистидин) являются основными и «потребителями» протонов при внутримо-лекулярной депротонизации а -СООН группы, образуя цвиттер-ионной формы. Поэтому, эти аминокислоты в качестве лигандов и в молекулярных комплексах, и в ВКС, в основном, координируются через атомы N и O α –АКГ хелатного строения.

Отметим, что глютамин и его ванадиевые координационные соединения проявляют противоопухолевые свойства против Карциносаркомы Уокера, саркомы-45, саркомы М-1 и опухоли Эрлиха (солидная форма) [1]. Сведения, появившиеся в последние

годы [2,3] говорят о том, что соединения V^{+4} $/V^{+5}$ неорганических, координа-ционных соединений так и виде противораковые органическими лигандами проявляют противодиабетические, противобактериальное и антиоксидантные свойства. Поэтому данные, приведенные в данном сообщении логическим продолжением является ЭТИХ исследований перспективе откроют возможности создания биопрепаратов заданными свойствами. В связи с этим, всех специалистов и ученых, занимающиеся научно - практическими исследованиями в данной области призываем к сотрудничеству.

ЛИТЕРАТУРА

- 1. Шодиев У.М. Координационные соединения ванадила(II) с аминокислотами. Автореферат дисс. уч. ст. канд.наук. Ташкент., 1986, 22 с.
- 2. E.Kioseoglou, S. Petanidis, C.Gabriel, A. Salifoglou The chemistry and biology of vanadium compounds in cancer therapeutics Coordination Chemistry Reviews p. 62. DOI: http://dx.doi.org/doi:10.1016/j.ccr.2015.03.010
- 3. I.M. El-Deen, A.F. Shoair, M.A. El-Bindary Synthesis, characterization and biological properties of oxovanadium(IV) complexes. Journal of Molecular Structure Journal of Molecular Structure (2018), p.40. doi:10.1016/j.molstruc.2018.12.012