Студ. Е.А. Струповец Науч. рук. доц. И.А. Хмызов (кафедра химической переработки древесины, БГТУ)

ИСПОЛЬЗОВАНИЕ ДИАММОНИЙФОСФАТА В ТЕХНОЛОГИИ ПРОИЗВОДСТВА ОГНЕСТОЙКИХ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ

Древесные плиты широко используются в мебельном производстве, при внутренней отделке помещений в домостроении. В настоящее время в Республике Беларусь нет предприятий, осуществляющих выпуск плит с повышенной огнестойкостью.

Горючесть всех видов древесных плит зависит от их плотности, однородности, компонентного состава, геометрических размеров, породы древесного сырья. Наличие карбамидного и особенно фенольного связующих в композиции плит сказывается на повышении дымообразования и токсичности продуктов горения.

Одними из наиболее эффективных антипиренов являются монои диаммонийфосфат ($NH_4H_2PO_4$ и (NH_4)₂ HPO_4). При нагревании они выделяют оксиды фосфора, которые покрывают древесину защитной пленкой и негорючий газ аммиак. Диаммонийфосфат является относительно недорогим часто используемым в качестве удобрения веществом, что говорит о его доступности и экологической безопасности.

Нами была исследована эффективность использования указанных реагентов в технологии производства древесностружечных плит (ДСтП). Выполнялась обработка древесной стружки водными растворами антипиренов концентрацией 15% с соответствующими расходами. Далее стружка высушивалась при температуре 120 °C до влажности 2%.

Дополнительно было исследовано влияние обработки исследуемыми реагентами древесины на краевой угол смачивания (КУС) её поверхности раствором связующего. Исследования проводили на образцах березового шпона, подвергая их обработке реагентами с расходом 15 г/м^2 и выполняя последующую сушку при температуре 120 °C.

Для оценки точности методики определения КУС было выполнено его измерение для 50 параллельных опытов с проведением последовательно определения итоговых среднего значения и среднеквадратичного отклонения, характеризующего рассеяние результатов измерений относительно среднего значения.

Был последовательно определён КУС на поверхности шпона березы раствором смолы КФ-НП концентрацией 55%. Методика оценки

КУС позволяет получить достоверные результаты при достаточно малом количестве параллельных опытов — после 9 измерений среднеквадратичное отклонение составляет 7-8 единиц, что при среднем значении КУС 60° соответствует достаточно низкому значению коэффициента вариации — 12,5%.

Далее при проведении исследований количество параллельных определений КУС составляло 10. Результаты определения физико-механических показателей и огнестойкости плит по методу «огневой трубы» приведены в таблице.

Таблица – Влияние антипиренов на физико-механические показатели и огнестойкость древесных плит

Содержание варианта	Плотность, $K\Gamma/M^3$	Предел проч- ности при изгибе, МПа	Разбухание, %	Потеря массы, %	КУС, град
NH ₄ H ₂ PO ₄ 3% к массе а.с. древесины	752	17,1	21,2	8,8	62,2
NH ₄ H ₂ PO ₄ 6% к массе а.с. древесины	743	20,2	23,6	6,2	58,3
(NH ₄) ₂ HPO ₄ 3% к массе а.с. древесины	776	18,0	20,8	8,4	66,9
(NH ₄) ₂ HPO ₄ 6% к массе а.с. древесины	761	19,6	22,1	5,6	61,1
Без антипирена	755	17,5	22,9	20,8	72,4

Как видно из полученных результатов введение антипиренов в композицию ДСтП существенно влияет на их показатели. При расходе антипиренов в интервале значений 3-6% существенно снижается потеря массы при горении — от 20,8% в контрольном образце до 5,6-8,8% в экспериментальных. Причем эффективность $(NH_4)_2HPO_4$ несколько выше, чем $NH_4H_2PO_4$. Это можно объяснить большим количеством выделяющегося при термическом разложении аммиака.

Результаты исследований показывают целесообразность и высокую эффективность использования (NH_4)₂HPO₄ в производстве древесностружечных плит путем обработки древесной стружки перед сушкой водным раствором с расходом 6% к а.с. стружке.

ЛИТЕРАТУРА

1. Леонович А. А. Физико-химические основы образования древесных плит / А.А. Леонович. – СПб.: ХИМИЗДАТ, 2003. – 192 с.