КООРДИНАЦИОННАЯ ХИМИЯ Том 3 • вып. 11 • 1977

УДК 535.343

Е. Д. ДЗЮБА, Р. Я. МЕЛЬНИКОВА, В. В. ПЕЧКОВСКИЙ, Г. И. САЛОНЕЦ, Т. И. БАРАННИКОВА

СПЕКТРОСКОПИЧЕСКОЕ ИЗУЧЕНИЕ ГИДРАТОВ СРЕДНЕГО ОРТОФОСФАТА КОБАЛЬТА

Известно существование двух гидратов среднего ортофосфата кобальта: $Co_3(PO_4)_2 \cdot 8H_2O$ и $Co_3(PO_4)_2 \cdot 4H_2O$ [1]. Ранее нами [2, 3] изучен процесс дегидратации $Co_3(PO_4)_2 \cdot 8H_2O$ методом термического анализа; приведены ИК спектры поглощения $Co_3(PO_4)_2 \cdot 8H_2O$ и продуктов его дегидратации, выделенных в характерных точках кривой ДТА. Работ по изучению тетрагидрата ортофосфата кобальта в литературе не обнаружено. Отсутствуют также сведения о структуре как $Co_3(PO_4)_2 \cdot 8H_2O$, так и $Co_3(PO_4)_2 \cdot 4H_2O$.

Цель данной работы — изучение состояния воды в тетрагидрате среднего ортофосфата кобальта и сопоставление его с таковым в Co₃(PO₄)₂.8H₂O.

Для идентификации частот колебаний ОН-содержащих групп и молекул H₂O проанализированы также ИК спектры поглощения дейтероаналогов изучаемых гидратов, записанные при комнатной температуре и при охлаждении до температуры жидкого азота.

Тетрагидрат среднего ортофосфата кобальта получали гидротермальной обработкой CoHPO₄·1,5H₂O при 120° в течение 24 час. Кристаллогидрат состава Co₃(PO₄)₂·8H₂O получали при взаимодействии водных растворов хлорида кобальта и тринатрийфосфата, взятых в стехиометрическом соотношении. Индивидуальность синтезированных гидратов устанавливали методами химического и рентгенофазового анализа. Дейтероаналоги синтезированы в аналогичных условиях с использованием растворов в тяжелой воде.

ИК спектры поглощения в области 400—3800 см⁻¹ записывали на спектрофотометре UR-20. Рабочая концентрация исследуемого вещества по массе в таблетке из КВг составляла 2%. Оптические спектры поглощения в видимой области спектра (30 000—12 500 см⁻¹) регистрировали на спектрофотометре Specord-UV VIS, образцы готовили в виде суспензии порошков в вазелиновом масле.

ИК спектры поглощения Co₃(PO₄)₂·4H₂O, Co₃(PO₄)₂·8H₂O и их дейтероаналогов, записанные при комнатной температуре и температуре жидкого азота, приведены на рис. 1, 2. Значения максимумов полос поглощения в спектрах этих соединений сведены в таблицу.

В спектре поглощения $Co_3(PO_4)_2 \cdot 4H_2O$ (рис. 1, кривая 1) можно выделить три области колебаний молекул гидратной воды: область валентных (2800—3600 см⁻¹), деформационных (1550—1670 см⁻¹) и либрационных (500—920 см⁻¹) колебаний. В области валентных ОН-колебаний проявляется несколько очень широких полос с размытыми максимумами, которые при охлаждении образца разрешаются более четко и дают чотыре максимума поглощения: 3410, 3310, 3125, 2930 см⁻¹ (рис. 1, кривал 2), а при дейтерировании смещаются с изотопическим коэффициентом k = 1, 34 - 1, 36(рис. 1, кривая 3). Деформационные колебания молекул воды дают сравнительно широкую полосу поглощения с максимумом при 1655 см⁻¹ (рис. 1,

Отнесение		v(OH) (OD) $\delta(H_2O) (D_2O)$ $v_{ae}(PO_4), F_2(v_1)$ $v_s(PO_4), A_1(v_5)$ $v_R(H_2O) (D_2O)$ $v_R(O_4), F_2,$ $v_e(PO_4), F_2,$
Co ₃ (PO4) 2.8D2O	t _{M.N2}	25560 2405 22855 22855 22855 22855 22855 22855 22855 22855 22855 22855 2883 808 808 808 808 808 808 808 808 808
	t ROMH	2585 2345 пл 2346 пл 1210 1210 1210 1210 1047 пл 1047 пл 1047 пл 1047 пл 1047 пл 1047 пл 1047 сл 860 пл 559 558 пл 558 пл 652 пл 652 пл 467 407 сл
Co ₃ (PO ₄) 2.8H ₂ O	t _{'H.N2}	3455 3455 3245 1595 1595 1595 1595 1595 1596 11 730 пл 730 пл 730 пл 730 пл 730 пл 730 пл 730 пл 730 пл
	t ROMH	3470 3200 H 3200 H 3200 H 1595 H 1045 HI 1045 HI 1045 H 1045 H 1045 H 1045 H 1045 H 1045 H 1046 HI 1046 HI 10
Co ₃ (PO ₄) ₂ .4D ₂ O	t _{M.Na}	2587 2587 2533 2450 23450 2240 2240 1075 ш 1075 ш
	tкомн	2640 пл 2545 2325 2325 2240 1215 1112 1002 1215 1112 1002 1215 - 975 - 975 - 975 - 975 - 790 - 765 - 765 - 765 - 765 - 765 - 765 - 765 - 765 - 765 - 7790 - 7700 - 77000 - 7700 - 77000 - 7700 - 77000 - 7700 - 77000 - 77000 - 77
C03 (PO4)2.4H20	t _{3K} .N2	3475 пл 3410 3310 3310 3310 3310 1670 1670 1105 915 915 915 850 850 610 643 610 643 610 643 655 596 643 610
	t KOMH	3420 田 3420 田 3325 田 3125 田 1655 田 1655 田 1022 905 田 905 田 853 853 708 853 853 708 708 708 708 708 708 708 708 708 708

Рис. 1. ИК спектры поглощения Co₃(PO₄)₂·4H₂O (1, 2) и Co₃(PO₄)₂·4D₂O (3, 4), записанные при температуре 20° (1, 3) и жидкого азота (2, 4)

кривая 1), которая при охлаждении образца разделяется на две компоненты: узкую средней интенсивности при 1670 см⁻¹ и вторую — около 1600 см⁻¹, проявляющуюся в виде четкого не очень интенсивного плеча. Высокое значение частоты деформационного колебания волы (1670 см⁻¹ по сравнению с частотой 1595 см⁻¹ для свободной молекулы H₂O) дает основание предположить, что молекулы воды в структуре Co₃(PO₄)₂·4H₂O сильно нагружены, а проявление двух компонент деформационного колебания может быть следствием существования пвух неэквивалентных типов молекул воды в этом гидрате, причем высокочастотная компонента в соответствии с известной антибатностью сдвига частот валентных и деформационных колебаний воды при ассоциации молекул [4] должна быть отнесена к колебаниям более сильно связанной воды. Полтвержлением наличия неэквивалентных типов молекул воды в структуре $Co_{3}(PO_{4})_{0} \cdot 4H_{0}O_{1}$ может служить также проявление в ИК спектре указанного гидрата большого числа полос либрационных колебаний H₂O: 915, 850, 805, 735, 705, 652, 643 и 610 см⁻¹. Причиной проявления такого большого набора либрационных частот может быть также и низкая симметрия молекул воды, входящих в Co₃(PO₄)₂·4H₂O, что приводит к проявлению наряду с маятниковыми и веерными частот крутильных колебаний молекул воды, обычно неактивных в ИК спектрах поглошения [5]. Отнесение частот к тому или иному типу либрационных колебаний в данном случае затруднительно. Отсутствие структурных данных для Со₃(РО₄)₂.4H₂O затрудняет однозначную интерпретацию наблюдаемых полос валентных колебаний молекул воды в ИК спектре указанного гидрата. Однако, основываясь на приведенных в литературе сведениях [4, 6], можно заключить, что молекулы воды в Co₈(PO₄)₂·4H₂O координированы ионами кобальта и участвуют в образовании водородных связей. Наибольшая величина энергии Нсвязи, оцененная по величине низкочастотного сдвига относительно $v_0 =$ = 3700 см⁻¹ [6], составляет ~15 ккал/моль.

К валентному колебанию связи Со — $O(H_2O)$ может быть отнесена полоса ~500 см⁻¹, слабо чувствительная к дейтерированию ($\Delta v = 16$ см⁻¹).

Спектр Co₃(PO₄)₂·4H₂O в области колебаний иона PO₄³⁻ может быть интерпретирован в предположении попижепия симметрии свободного иона PO₄³⁻. Проявление в ИК спектре поглощения полос, соответствую-

Рис. 2. ИК спектры поглощения $Co_3(PO_4)_2 \cdot 8H_2O$ (1, 2) и $Co_3(PO_4)_2 \cdot 8D_2O$ (3, 4), записанные при температуре 20° (1, 3) и жидкого азота (2, 4), а также продуктов дегидратации $Co_3(PO_4)_2 \cdot 8H_2O$ с $\Delta m_{H_2O} = 50\%$ (5) и $Co_3(PO_4)_2$ (6)

щих запрещенным вырожденным колебаниям группы PO₄ v₃, v₁ и v₄ (таблица), свидетельствует о низкой симметрии тетраэдра PO₄³⁻ вследствие искажения его за счет различного рода взаимодействий.

ИК спектр поглощения гидрата $Co_3(PO_4)_2 \cdot 8H_2O$ также довольно сложный (рис. 2). Дейтерирование указанного кристаллогидрата и охлаждениеобразцов в процессе записи позволили выделить в ИК спектре поглощения частоты, относящиеся к колебаниям групп ОН и молекул H_2O в целом (таблица). Наличие трех компонент частоты деформационного колебания H_2O обусловлено, вероятно, существованием в $Co_3(PO_4)_2 \cdot 8H_2O$ трех видов структурно неравноценных молекул воды, на что уже указывалось ранее [3, 7].

Удаление 4 молей H_2O из $Co_3(PO_4)_2 \cdot 8H_2O$ ($\Delta m_{H_2O} = 50\%$) не приводит к принципиальному изменению ИК спектра поглощения по сравнению с исходным, и спектр полученного образца условного состава $Co_3(PO_4)_2 \cdot \cdot 4H_2O$ (рис. 2, кривая 5) совершенно отличен от ИК спектра, синтезированного независимым путем тетрагидрата $Co_3(PO_4)_2 \cdot 4H_2O$. Потеря 4 молей H_2O из $Co_3(PO_4)_2 \cdot 8H_2O$ обратима, и при регидратации в гидротермальных условиях снова образуется исходный октагидрат фосфата кобальта.

Состояние воды в гидратах среднего ортофосфата кобальта, содержащего 4 и 8 молекул H₂O, существенно различно. Полученные экспериментальные данные позволяют предположить, что одна молекула воды в Со₃(PO₄)₂·4H₂O связана слабыми водородными связями, а три другие прочно связаны с катионом и анионом координационными и водородными связлми. В кристаллогидрате Co₃(PO₄)₂·8H₂O шесть молекул H₂O находятся во внешней координационной сфере и имеют, вероятно, цеолитный характер, поскольку их удаление при нагревании не оказывает существенного влияния на структуру фосфата. Остальные две молекулы H₂O входят в

Рис. 2. ИК спектры поглощения $Co_3(PO_4)_2 \cdot 8H_2O$ (1, 2) и $Co_3(PO_4)_2 \cdot 8D_2O$ (3, 4), записанные при температуре 20° (1, 3) и жидкого азота (2, 4), а также продуктов дегидратации $Co_3(PO_4)_2 \cdot 8H_2O$ с $\Delta m_{H_2O} = 50\%$ (5) и $Co_3(PO_4)_2$ (6)

щих запрещенным вырожденным колебаниям группы PO₄ v₃, v₁ и v₄ (таблица), свидетельствует о низкой симметрии тетраэдра PO₄³⁻ вследствие искажения его за счет различного рода взаимодействий.

ИК спектр поглощения гидрата $Co_3(PO_4)_2 \cdot 8H_2O$ также довольно сложный (рис. 2). Дейтерирование указанного кристаллогидрата и охлаждениеобразцов в процессе записи позволили выделить в ИК спектре поглощения частоты, относящиеся к колебаниям групп ОН и молекул H_2O в целом (таблица). Наличие трех компонент частоты деформационного колебания H_2O обусловлено, вероятно, существованием в $Co_3(PO_4)_2 \cdot 8H_2O$ трех видов структурно неравноценных молекул воды, на что уже указывалось ранее [3, 7].

Удаление 4 молей H_2O из $Co_3(PO_4)_2 \cdot 8H_2O$ ($\Delta m_{H_2O} = 50\%$) не приводит к принципиальному изменению ИК спектра поглощения по сравнению с исходным, и спектр полученного образца условного состава $Co_3(PO_4)_2 \cdot \cdot 4H_2O$ (рис. 2, кривая 5) совершенно отличен от ИК спектра, синтезированного независимым путем тетрагидрата $Co_3(PO_4)_2 \cdot 4H_2O$. Потеря 4 молей H_2O из $Co_3(PO_4)_2 \cdot 8H_2O$ обратима, и при регидратации в гидротермальных условиях снова образуется исходный октагидрат фосфата кобальта.

Состояние воды в гидратах среднего ортофосфата кобальта, содержащего 4 и 8 молекул H₂O, существенно различно. Полученные экспериментальные данные позволяют предположить, что одна молекула воды в Co₃(PO₄)₂·4H₂O связана слабыми водородными связями, а три другие прочно связаны с катионом и анионом координационными и водородными связями. В кристаллогидрате Co₃(PO₄)₂·8H₂O шесть молекул H₂O находятся во внешней координационной сфере и имеют, вероятно, цеолитный характер, поскольку их удаление при нагревании не оказывает существенного влияния на структуру фосфата. Остальные две молекулы H₂O входят в. фосфатную решетку более прочно и их выделение ведет к глубокой перестройке структуры исходного фосфата.

ИК спектры поглощения образ цов, полученных при полном обезвоживании как Co₃(PO₄)₂·4H₂O, так и Co₃(PO₄)₂·8H₂O, идентичны; они содержат полосы поглощения, которые характеризуют колебания аниона РО43-, симметрия которого в безводном фосфате остается низкой.

Данные термического анализа изотермического И нагревания $Co_3(PO_4)_2 \cdot 8H_2O$ при различных температурах показали, что при дегидратации этого гидрата не образуется устойчивый гидрат Со₃(РО₄)₂·4H₂O. Причиной этого может быть глубокое различие в строении координационного полиэдра ионов кобальта в указанных гидратах. Для проверки этого предположения были получены электронные спектры поглощения Со₃(РО₄)₂·8H₂О и Со₃(РО₄)₂·4H₂O (рис. 3). Анализ электронных спектров этих соединений и сопоставление их с литературными данными [8] показали, что ионы Со²⁺ в структуре Co₃(PO₄)₂.8H₂O нахо-

Рис. 3. Электронные спектры поглощения Со₃(PO₄)₂·8H₂O (*I*), Со₃(PO₄)₂·4H₂O (*3*) и продуктов дегидратации Со₃(PO₄)₂·8H₂O с $\Delta m_{\rm H_2O} = 50\%$ (2) и Со₃(PO₄)₂ (4)

дятся в октаэдрическом окружении (широкая полоса поглощения области 19 500 -22 100 см-1, расщепленная вследствие осуществления спин-орбитального взаимодействия). В спектре Co₃(PO₄)₂·4H₂O наблюдается сравнительно широкая полоса поглощения, значительно смещенная в сторону низких частот (17 100 -20 100 см-1) и имеющая три четко разрешенных максимума (17 100-18 300 и 20 100 см⁻¹), что дает основание полагать, что в Co₃(PO₄)₂·4H₂O осуществляется тетраэдрическая координация ионов Co²⁺, сохраняющаяся и в безводном Co₃(PO₄)₂.

В заключение авторы выражают благодарность зав. лабораторией спектральных исследований ИНХ АН ЛатвССР З. А. Константу за предоставление возможности снятия электронных спектров поглощения.

ЛИТЕРАТУРА

- 1. R. Klement, H. Haselbeck. Z. anorgan. allgem. Chem., 334, 27 (1964).
- 2. Л. Н. Щегров, В. В. Печковский, Л. С. Ещенко. Ж. прикл. химни, 42, 1451 (1969).

Л. Н. Щегров, Б. Б. нечковский, Л. С. Ещенко. К. прикл. химии, 42, 1451 (1909).
Л. Н. Щегров и др. Ж. физ. химии, 44, 64 (1970).
В. М. Вдовенко, Д. Н. Суглобов, А. П. Таранов. Радиохимии, 6, 559 (1964).
D. M. Adams, P. J. Lock. J. Chem. Soc., A, 2801 (1971).
L. J. Bellamy, A. J. Owen. Spectrochim. acta, 25A, 329 (1969).
B. Манк и др. Ж. прикл. спектроскопии, 12, 913 (1970).
О. Н. Бокша, С. В. Грум-Гржимайло. Исследование онгических спектров кристал лов с ионами группы железа. при компатной и цизики. томполотурах. «Цамках

- - лов с ионами группы железа при компатной и пизких температурах. «Паука», М., 1972, стр. 19.

Белорусский технологический институт им. С. М. Кирова

Поступила в редакцию 6 октября 1976 г.