УДК 546.76'185

Печковский В. В., Островский Л. К., Ещенко Л. С., Гребенько Н. В.

ВЛИЯНИЕ ГИДРОТЕРМАЛЬНОЙ ОБРАБОТКИ НА СВОЙСТВА ФОСФАТОВ ХРОМА

В [1] показано влияние способов получения фосфатов хрома на их структурно-адсорбционные свойства. При этом отмечено, что одним из способов получения пористых фосфатов хрома с различным размером пор и характером их распределения по объему является метод гидротермальной обработки, применяемый рядом авторов [2-4] для модифицирования структуры гидрогелей и ксерогелей неорганических соединений.

В настоящей работе изучено влияние условий гидротермальной обработки на формирование пористой структуры фосфатов хрома с различным мольным отношением P₂O₅ : Cr₂O₃.

Гидрогели фосфатов хрома получали по методике [1, 5]. Соотношение P₂O₅: Cr₂O₃ в исходных растворах изменяли от 0,75 до 1,5, что позволяло получать устойчивые гидрогели фосфатов хрома. Гидрогели, отмытые от ионов NO₃⁻ и избыточной мочевины, помещали в стальные автоклавы с тефлоновыми вкладышами и подвергали гидротермальному старению при .323-523 К в течение 3-72 ч. После гидротермального модифицирования гидрогели отжимали на фильтре, сушили при 353 К и прокаливали при .523-1020 К. Полученные таким образом ксерогели фосфатов хрома анализировали химическими и физико-химическими методами исследования [1].

Соотношения P2O5: Cr2O3 (в молях) в гидрогелях, отмытых от NO3и избытка мочевины водой или ацетоном, и в ксерогелях фосфатов хрома приведены в табл. 1. Уменьшение соотношения P₂O₅ : Cr₂O₃ в гидрогелях по сравнению с соотношением P₂O₅: Cr₂O₃ в исходных растворах связано с протеканием гидролиза при отмывке фосфатов хрома водой, что понижает в них количество P2O5, особенно в случае образцов с соотношением P₂O₅: Cr₂O₃>1. Отмывка гидрогелей ацетоном существенно не измендет соотношение P₂O₅: Cr₂O₃ в получаемых гидрогелях по сравнению с соотношением P₂O₅: Cr₂O₃ в исходных растворах. Из табл. 1 также следует, что после гидротермальной обработки гидрогелей фосфатов хрома происхолит дальнейшее уменьшение количества Р₂О₅ в образцах. Причина такого изменения количества P2O5 в твердой фазе обусловлена, вероятно, тем, что при гидротермальной обработке гидратная вода, взаимодействуя с поверхностью фосфата хрома, приводит к его гидролизу и выделению фосфорной кислоты, которая нейтрализуется продуктами разложения мочевины с образованием фосфатов аммония. При этом в процессе гидротермальной обработки образцов их объем уменьшается, протекают процессы растворения и переосаждения фосфатов хрома с укрупнением их частиц. Для образнов с соотношением P2O5: Cr2O3>1 вследствие их лучшей растворимости указанные процессы протекают более интенсивно.

Подобное перераспределение вещества за счет растворения малых глобул и роста более крупных приводит к формированию крупнопористой текстуры, что подтверждается изотермами сорбции и десорбции бензола, указывающими на сдвиг капиллярно-конденсационной части изотерм в сторону больших относительных давлений (рис. 1, *a*) и характером изменения распределения пор по эффективным радиусам для ксерогеля фосфата хрома с отношением P_2O_5 : $Cr_2O_3=1,37$ (рис. 1, *b*). Так, при увеличении отношения P_2O_5 : Cr_2O_3 в гидрогеле фосфата хрома до 1,45 удельная поверхность ксерогеля уменьшается в 2,5 раза, в то время как сорбционный объем возрастает на 30%.

Таблица Г

Условия синтеза и результаты исследования образцов фосфатов хрома (температура гидротермальной обработки 423 К, продолжительность обработки – 3 ч)

Образец *		$P_2O_5 : C$	2r ₂ O ₃ ***		S	V ₈ , см ³ /г	R _{9¢} , Å
	I	11	111	IV	см ² /г		
1 2 3 4 **	0,75 1,00 1,50 1,00	0,73 0,98 1,45 0,98	0,75 1,00 1,50 1,00	0,72 0,96 1,37 0,98	2,80 3,00 1,20 0,1	0,15 0,18 0,24 0,03	17; 25 15; 23 37 -

* Для всех образцов параметры пористой структуры определены после сушки при 383 К и последующей термообработки при 623 К.
 *** Образец 4 получен из гидрогеля, не подвергнутого гидротермальной обработке.
 *** Соотношецие Р₂О₅ : СтзО₅ в реакционной смеси — 1; в гидрогеле после отмывки водой — II; в гидрогеле после отмывки ацетоном — III; в ксерогеле — IV.

Таблица 2

Влияние гидротермальной обработки гидрогеля и температуры прокаливания ксерогеля фосфата хрома (P₂O₅ : Cr₂O₃ = 0,96) на величину его удельной поверхности Syg

τ _{обр} ч	S _{уд} . 10 ⁶ , см ² /г										
	323 * 523	323 1023	373 523	373 1023	<u>423</u> 523	423 1023	<u>473</u> 523	473	523 523	523 1023	
3 6 10 24 48 72	0,02 0,03 0,04 0,06 0,08 0,12	0,01 0,01 0,01 0,02 0,03 0,05	$\begin{array}{c} 0,10\\ 0,12\\ 3,95\\ 4,90\\ 4,40\\ 3,90 \end{array}$	0,01 0,01 0,10 0,60 0,90 1,00	3,60 5,20 6,10 5,70 4,85 3,80	0,60 0,75 0,80 0,90 1,00 1,10	4,90 5,60 4,90 4,10 4,00 3,20	$0,90 \\ 0,95 \\ 1,10 \\ 1,20 \\ 1,35 \\ 1,40$	5,10 3,40 2,60 2,50 2,40 2,25	1,70 1,55 1,35 1,30 1,25 1,20	

* Числитель — температура гидротермальной обработки; знаменатель — температура прокаливания ксерогеля, К.

Результаты измерения величины удельной поверхности образцов ксерогелей фосфатов хрома, полученных после гидротермальной обработки гидрогелей в интервале 323-523 К в течение 3-72 ч с последующей термообработкой, показаны в табл. 2. Для ксерогелей фосфата хрома характерно изменение величины удельной поверхности как от температуры гидротермальной обработки, так и ее продолжительности. Повышение темцературы гидротермальной обработки гидрогелей фосфатов хрома в течение первых 3 ч способствует возрастанию величины удельной поверхности их ксерогелей (табл. 2). С увеличением длительности и температуры гидротермального модифицирования гидрогелей S_{уд} ксерогелей возрастает и проходит через максимум, после чего непрерывно уменьшается. Такие изменения величины S_{уд} ксерогелей фосфатов хрома можно объяснить следующим образом: при гидротермальной обработке в начальный период. наиболее интенсивно протекают реакции гидролиза и дегидратации, обусловливающие тем самым диспергирование частичек и увеличение вследствие этого удельной поверхности фосфата хрома. Такое дробление частичек в результате расклинивающего действия воды (эффект Ребиндера) происходит и при гидротермальном активировании гидроксида хрома [6].

Протекание процессов растворения и переконденсации мелких частичек гидрогеля, скорость которых возрастает с увеличением продолжительности и температуры гидротермальной обработки, сопровождается сокращением объема микро- и переходных пор, формированием макротекстуры, в результате чего удельная поверхность ксерогелей уменьшается. С повытением температуры гидротермальной обработки наряду с процессом растворения мелких частиц фосфата хрома наблюдается, как в случае гидротермального модифицирования многих других адсорбентов и катализаторов [7], растворение частиц более крупных размеров, что существенно

Рис. 1. Изотермы адсорбции бензола (а) и кривые распределения объема пор по радиусам (б) образцов фосфатов хрома с отношением Р₂О₅: Сг₂О₃ в сухом остатке: 0,72 (1), 0,96 (2), 1,37 (3) (температура обработки ксерогелей 623 К)

Рис. 2. Дифференциальная термобарометрическая кривая термодесорбции бутиламина (a) и кривые распределения кислотных центров (b) для фосфатов хрома после термообработки при 823 К и p=1,33-5,32 Па. Соотношение P₂O₅: Cr₂O₃ в сухом остатке: 0,96 (1), 1,37 (2) (I — слабые, II — средние и III — сильные кислотные центры; Δn , масс.% — потери бутиламина при термодесорбции)

уменьшает величину удельной поверхности фосфатов хрома (табл. 2). Так, гидротермальная обработка гидрогеля при 523 К в течение 24 ч уменьшает S_{yx} до 2,5·10⁶ см²/г по сравнению с 5,7·10⁶ см²/г при 423 К (табл. 2).

Результаты термической обработки гидрогелей фосфата хрома после их гидротермального модифицирования соответствуют общим представлениям о механизме спекания пористых тел таких, как, например, алюмосиликагели, скелет которых состоит из шаровидных пористых частичек, т. е. имеет корпускулярное строение.

Из табл. 2 следует, что фосфаты хрома, полученные гидротермальной обработкой гидрогеля фосфата хрома при 373, 423 К в течение 72 ч, наиболее подвержены явлениям термического старения. Общим для всех пористых фосфатов хрома, независимо от их состава и условий гидротермальной обработки, является значительное сокращение удельной поверхности при прокаливании за счет срастания частиц в местах их контакта друг с другом.

Известно [3], что адсорбционные и каталитические свойства пористых тел зависят не только от их структуры, характеризующейся величиной S_{уд}, размером пор и характером их распределения по объему, но и от химических свойств их поверхности. На рис. 2 представлены результаты, позволяющие оценить распределение кислотных центров по силе для ксе-

рогелей фосфата хрома. Кислотные свойства образнов определяли методом сорбнии паров бутиламина с использованием вакуумной установки с кварцевыми весами Мак-Бена – Бакра. Термолесорбнию образна фиксировали с помощью двухкоординатного потенциометра и катетометра. Методика определения кислотности заключалась в следующем: предварительно термообработанные образны фосфатов хрома помешали в чашечку кварцевых пружинных весов и прокаливали в вакууме при 823 К до постоянного веса, после чего при комнатной температуре осуществлялась сорбция паров бутиламина. После удаления физически адсорбированного бутиламина при <373 К на кривой термодесорбции (рис. 2, а) прослеживается четкое разлеление процесса десорбнии бутиламина с поверхности фосфата хрома на три области: I - 373-548 К: II - 548-748 К и III -748 К. Как и в случае определения кислотности алюмохромовых катализаторов [8]. условно приняли, что бутиламин, десорбирующийся в І области, связан со слабокислотными участками поверхности, во II — с участками средней силы и в III - с сильными центрами.

На осповании полученных данных построили кривые распределения кислотных центров по их силе для образнов фосфатов хрома (рис. 2, 6). Для исследованных фосфатов хрома характерно преобладание слабокислотных и среднекислотных мест (рис. 2, 6). При этом у фосфатов хрома с отношением Р₂O₅ : Cr₂O₃=0,96 наблюдается незначительный рост среднекислотных и сильнокислотных мест. Следует отметить, что кислотность для данных образцов изменяется от 0,65 до 0,6 ммоль/г по мере увеличения соотношения P₂O₅ : Cr₂O₃ от 0.96 до 1.37.

выволы

Установлено, что формирование пористой структуры фосфатов хрома определяется как условиями осаждения, так и послепующими сталиями гидротермальной и термической обработки.

Показано, что поверхность ксерогелей фосфатов хрома облалает кислотными центрами различной силы, зависящей от их состава.

Литература

- 1. Печковский В. В., Ещенко Л. С., Гребенько Н. В., Островский Л. К. Влияние способов приготовления фосфатов хрома на их адсорбционно-структурные свой-ства.— Изв. АН СССР. Неорган. материалы, 1981, т. 17, № 2, с. 333. 2. Чертов В. М., Джамбаева Д. Б., Неймарк И. Е. Влияние гидротермальной обра-
- ботки гидрогеля кремниевой кислоты на структуру и свойства ксерогеля. Коллоидн. ж., 1965, т. 27, № 2, с. 279.
- З. Сардарлы А. М., Еременко А. М., Неймарк И. Е. Влияние модифицирования пористой структуры и химии поверхности промышленных пеолитсодержащих ка-
- тализаторов на их свойства.— Укр. хим. ж., 1978, т. 44, № 10, с. 1039. 4. Чертов В. М., Тютюнник Р. С. Синтез и геометрическое модифицирование тек-стуры фосфатов алюминия и железа.— В сб.: Адсорбция и адсорбенты. Вын. 8. Киев: Наук. думка, 1980, с. 84. 5. Гребенько Н. В., Печковский В. В., Ещенко Л. С., Островский Л. К., Грязнова З. В., Крымова В. В. Способ получения пористого фосфата хрома: А. с. № 698921 (СССР).
- (СССР). Опубл. в Б. И., 1979, № 43.
 6. Чертов В. М., Оконная Н. Т. Гидротермальное активирование гидровкиси хрома.-Укр. хим. ж., 1973, т. 39, № 8, с. 842.
 7. Комаров В. С., Дубницкая И. Б. Физико-химические основы регулирования пори-
- стой структуры адсорбентов и катализаторов. Минск: Наука и техника, 1981, c. 45.
- 8. Стерлиеов О. Д., Пономарева С. А., Медведев В. Н. О кислотности восстановленных алюмохромовых катализаторов. – Изв. АН СССР. Сер. хим., 1973, № 6, с. 1330.

Белорусский технологический институт им. С. М. Кирова

Поступила в редакцию 24.VII.1981