цикла продукции, обусловленной динамически изменяющимся ассортиментом и номенклатурой изделий при ужесточении требований к себестоимости продукции. В этих условиях актуальным является решение оптимизационных задач упаковки и раскроя. Современное производство характеризуется необходимостью тщательного анализа и экономии требуемого расхода материала на этапе проектирования изделия, а также разнообразным ассортиментом деталей и изделий. Задачи упаковки и раскроя в условиях единичного производства возникают при индивидуальном производстве изделий, как правило, из дорогостоящих материалов, при планировании размещений различных предметов в контейнерах, при этом конструирование таких размещений и раскроев представляет далеко нетривиальную задачу.

Задачи раскроя и упаковки, ориентированные на единичное производство, относятся к классу NP-трудных задач комбинаторной оптимизации, т. е. для их решения нет методов и алгоритмов, находящих точное решение за полиномиальное время. Существующие точные методы решения задач упаковки и раскроя основаны на схеме полного перебора, поэтому они оказываются мало пригодными для решения задач, встречающихся на практике.

В ходе выполнения задания была проделана работа в нескольких последовательных этапов: выбор языка программирования; выбор методики решения задачи по раскрою-упаковке; выбор алгоритма для заполнения пространства; выбор и реализация библиотек Python для ввода и визуализации данных.

Результатом визуализации стал pdf файл, на который изображались схемы укладки бруса в вагоны, зависящие от параметров задаваемых в xlsx файле.

Заключение: Разработана программа оптимизации транспортных схем укладки пилопродукции крупного сечения на примере заданий БШПЗ.

УДК 674.093

Студ. М.И. Дребушевич Науч. рук. доц. И.Г. Федосенко (кафедра технологии деревообрабатывающих производств, БГТУ)

ОПТИМИЗАЦИЯ СОСТАВА СМЕСИ ДЛЯ ПРОИЗВОДСТВА КОРЬЕВЫХ ПЛИТ НА МИНЕРАЛЬНОМ СВЯЗУЮЩЕМ

Древесная кора считается внебалансовым отходом обработки древесины.

Задачами исследования стали:

- измерение тепловых свойств плит, полученных из смеси хвойной коры деревьев с гипсом или цементом;
- влияние добавки пеногасителя Sofexil на влагопоглощение и водопоглощение готовых плит.

Для получения композитных плит была взята измельченная кора хвойных деревьев и выделена фракция с размером частиц от 2 до 5 мм и от 1 до 2 мм. В качестве вяжущего использовался гипс строительный Γ -4 и Γ -5, портландцемент ПЦ-500Д0. Кора с гипсом или с цементом смешивались в сухом соотношении 60/40%; 50/50%; 70/30%; 45/55% по объему соответственно.

В проведенном исследовании были получены результаты:

- при увеличении содержания коры уменьшается плотность и прочность плиты;
- наибольшее количество влаги и воды впитывает смесь с соотношением 60/40% коры и гипса с добавлением пеногасителя Sofexil;
- в результате сравнения, смесь с соотношением коры и вяжущего 60/40% оказалась более оптимальной.

Таблица – Сравнение показателей плит с гипсовыми и цементным в вяжущим с соотношением 60/40% коры и вяжущего

b bany man c coornomenaem ou/40 /0 kopbi a bany mei o			
Показатель	60(2-5 _{MM}) / 40(Γ4)	60(2-5 _{MM}) / 40(Γ5)	60(2-5мм) / 40(Цем)
Плотность, кг/м ³	526,619	680,708	1134,243
Прочность на изгиб, Мпа	0,776	0,385	2,074
Влагопоглощение, %	7,373	-	5,448
Водопоглощение, %	78,411	-	33,725
Теплопроводность, Вт/м*К	0,109	0,172	0,283
Начальная влажность, %	4,81	4,12	5,37

Анализируя результаты, видно, что высокопрочный гипс марки Γ -5 увеличивает плотность и теплопроводность плиты, но уменьшает ее прочность в сравнении со смесью содержащую гипс Γ -4.