Том 34

1989

Вып, З

УДК 543.42:546.18'33

МАЛАШОНОК И. Е., МЕЛЬНИКОВА Р. Я., ПЕЧКОВСКИЙ В.В., БУЛАВКИНА Н.В., ТИХОНОВИЧ Т.А.

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ И СТРОЕНИЕ ТРИФОСФАТОВ НАТРИЯ

Выполнон анализ ИК спектров поглощения и спектров комбинационного рассояния $Na_5P_3O_{10}-I$, $Na_5P_3O_{10}-II$ и $Na_5P_3O_{10}\cdot 6H_2O$. Для $Na_5P_3O_{10}-II$, $Na_5P_3O_{10}\cdot 6H_2O$ отнесение частот в области валентных колебаний $P_3O_{10}^{5-}$ аниона проводилось с учетом выполненного рассчета. Каждая из форм трифосфата натрия имеет характерный ИК спектр, что позволяет применять метод для идентификации как индивидуальных форм $Na_5P_3O_{10}-I$, $Na_5P_3O_{10}-II$, Na_5P_3O

Трифосфат натрия — один из наиболее широко используемых технических фосфатов — существует в виде двух безводных кристаллических форм: низкотемпературной Na₅P₃O₁₀ — II и высокотемпературной Na₅P₃O₁₀ — I и гидрата Na₅P₃O₁₀ · 6H₂O.

Спектроскопические данные для этих фосфатов ограничены и противоречивы [1-3], а выполненные с использованием различных способов описания силового поля расчеты колебаний аниона Р₃О₁₀⁵⁻ [4,5] дают неоднозначную трактовку спектра.

В данной работе выполнено исследование спектров ИК и КР поликристаллических трифосфатов натрия: Na₅P₃O₁₀ – I, Na₅P₃O₁₀ – II и Na₅P₃O₁₀ · 6H₂O. Спектры интерпретированы в терминах характеристических групповых частот с привлечением расчетных данных.

ИК спектры поглощения записаны в интервале частот 400-4000 см^{-*} на спектрофотометре Specord-75 IR с использованием методики прессования образцов с бромистым калием. Спектры комбинационного рассеяния записаны на спектрометре Ramalog с аргоновым лазером (λ_{возб}=514,5 нм). Спектры (ИК и КР) исследуемых трифосфатов натрия приведены на рис. 1.

Для низкотемпературной формы $Na_5P_3O_{10} - II$, кристаллизующейся в моноклинной сингонии, пр. гр. C2/c [6], соотношения между колебаниями изолированного иона $P_3O_{10}^{5-}$ с идеальной симметрией C_{2v} , этого же иона с локальной симметрией C_2 и колебаниями ионов в кристалле с фактор-группой C_{2h} можно проиллюстрировать следующей корреляционной схемой:

 $\begin{array}{c} C_{2v} & C_2 & C_{2h} \\ 11A_1 & --- 17A_{-} & -- 17A_{g} \\ 6A_2 & --- 16B_{-} & -- 16B_{g} \\ 7B_2 & --- 16B_{u} & -- 16B_{u} \end{array}$

Певая половина схемы отражает изменение симметрии иопа под влиянием статического поли кристалиа, правая — результат резонансного взаимодействия транслационно неэквивалентных ионов в кристалле. Согласно структурным данным [6], число анионов $P_{3}O_{10}^{5-}$, приходящихся на одну кристаллографическую элементарную ячейку $Na_{5}P_{3}O_{10}$ — II, равно четырем, однако объем примитивной, т. е. наименьшей трансляционно неидентичной ачейки при базоцентрированной решетке C2/c будет в 2 раза меньше. В связи с этим не должно наблюдаться увеличения количества полос даже в случае резонансного взаимодействия трансляционно неэквивалейтных

Рис. 1

анионов, поскольку фактор-группа кристалла центросимметрична. В соответствии с изложенным в ИК спектре $Na_5P_3O_{10}$ — II в области частот колебаний аниона можно наблюдать не более одной полосы $v_{as}PO_2$ и v_sPO_2 , четырех полос $v_{as}PO_3$, двух полос v_sPO_3 , $v_{as}POP$ и v_sPOP . Полученные спектры $Na_5P_3O_{10}$ — II (рис. 1) демонстрируют совпадение числа полос характеристических колебаний с ожидаемым.

Значения колебательных частот и их отнесение приведены в табл. 1. Интерпретацию полос проводили на основании расчета частот на ЭВМ EC-1033 по программам [7]. В табл. 2 приведены используемые в расчете значения диагональных элементов матрицы U для связей PO, обозначенных в соответствии с рис. 2. При выборе силовых постоянных kPO руководствовались их корреляцией с межатомными расстояниями rPO [8]. Величины диагональных силовых постоянных угловых колебательных координат (k_{α}), постоянных взаимодействия связей (h), взаимодействия содержащих общую связь углов (l), взаимодействия связи с углом (a) в единицах см⁻²·10⁶ приняли следующие (цифры в скобках указывают номер колебательной координаты согласно табл. 2 и рис. 2):

$k_{\alpha(1,2)} = 2,4$	$h_{(1,5)} = 0.05$	$a_{q(1)\alpha(1,2)} = 0,4$
$k_{\alpha(1,3)} = 2,9$	$h_{(3,4)} = 0,90$	$a_{q(1)\alpha(2,3)} = 0,4$
$k_{\alpha(3,4)} = 2,9$	$h_{(5,6)} = 0,10$	$a_{q(1)\alpha(1,5)} = 0,3$
$k_{\alpha(1.5)} = 0.7$	$h_{(6,7)} = 0,65$	$a_{q(3)q(1,3)} = 0,4$
$k_{\alpha(5,6)} = 2,7$	$l_{\alpha(1,2)\alpha(1,3)}^{(0,1)} = 0,3$	$a_{q(3)q(3,4)} = 0,6$
$k_{\alpha(0,0)} = 2,3$	$l_{\alpha(5,e)\alpha(6,7)} = 0.25$	$a_{q(5)q(5,6)} = 0,3$
$h_{(1,0)} = 0.65$	$l_{\alpha(r, 0)\alpha(r, 7)} = 0,1$	$a_{q(s)\alpha(5,6)} = 0,3$
$h_{(1,2)}^{(1,2)} = 0.70$	$l_{u(0,0)u(0,0)} = 0.3$	$a_{a(0)a(0,0)} = 0.35$
(1,3)	02(0,7)02(0,8)	Q(0)(c(0,7)

Таблица 1

Экспериментальные и вычисленные частоты (см⁻¹) валентных колебаний аниона Р₃О₁₀⁵⁻ в трифосфатах натрия

Na ₅ P ₃ O ₁₀ -II		Na ₅ P ₃ O ₁₀ ·6H ₂ O		Na5P3O10-I				
ик	КР3	расчет	ик	КР	расчет	ИК	KP	Отнесение
1214 1185 1170 1144 1096 1014 992 952 900 736	1100 994 949 739	1213 1182 1181 1158 1157 1100 1019 1018 912 903 759	1214 1156 1128 1080 1100 1015 995 961 875 769	1210 1160 1140 1100 992 967 758	1220 1177 1176 1176 1089 1090 1039 1015 918 909	1216 1148 1092 1020 989 912 752	1211 1147 1092 1010 750	$ \begin{array}{ } v_{as}PO_{2} \\ v_{as}PO_{3} \\ v_{s}PO_{2} \\ v_{s}PO_{3} \\ v_{as}POP \\ \end{array} $
665		687	712			(734) 709 (674)		v _s POP

Таблица 2

Номера колебательных координат связей РО и образующих их атомов, равновесные значения r PO и диагональных элементов матрицы U

Номер коор- динаты	Номера обра- зующих атомов	Равновесное зна- чение rPO(А) для Na ₅ P ₃ O ₁₀ -II [6]	kPO, см ⁻² ·10 ⁶ для Na₅P ₃ O ₁₀ -II	Равновесное значе- ние rPO(Å) для Na ₅ P ₃ O ₁₀ .6H ₂ O [S]	kPO, см ⁻² ·10 ⁶ для Na₅P₃O ₁₀ ·6H₂O
1 2 3 4 5 6 7 8 9 40 11 12	$\begin{array}{c} 2-1\\ 3-1\\ 4-1\\ 5-1\\ 2-6\\ 7-6\\ 8-6\\ 9-6\\ 3-10\\ 11-10\\ 12-10\\ 13-10\\ \end{array}$	$\begin{array}{c} 1,641\\ 1,611\\ 1,485\\ 1,485\\ 1,676\\ 1,502\\ 1,500\\ 1,500\\ 1,676\\ 1,502\\ 1,500\\ 1,502\\ 1,500\\ 1,490\\ \end{array}$	$7,02 \\7,02 \\12,77 \\12,77 \\4,57 \\11,54 \\11,70 \\12,40 \\4,57 \\11,54 \\11,54 \\11,70 \\12,40 \\12,40 \\$	$\begin{array}{c} 1,60\\ 1.60\\ 1,51\\ 1,51\\ 1,51\\ 1,67\\ 1,52\\ 1,51\\ 1,52\\ 1,67\\ 1,51\\ 1,52\\ 1,51\\ 1,52\\ 1,53\end{array}$	$\begin{array}{c} 6,6\\ 6,6\\ 12,8\\ 12,8\\ 5,0\\ 11,0\\ 12,7\\ 11,0\\ 5,0\\ 12,7\\ 11,0\\ 9,9\\ \end{array}$

Силовые постоянные взаимодействия колебательных координат, однотипные приведенным, взяты с такими же значениями. Для остальных типов взаимодействия колебательных координат элементы матрицы U приняты равными нулю.

Рассчитанные формы колебаний находятся в согласии с эмпирическим отнесением частот [1-3]. Антисимметричным валентным колебаниям срединной группировки $v_{as}PO_2$ в $Na_5P_3O_{10}$ —II соответствует самая высокочастотная полоса 1214 см⁻¹. Частота $v_{as}PO_2$ превышает частоты $v_{as}PO_3$ концевых групп, что и должно наблюдаться при больших значениях средних порядков связей РО для срединных групп [1]. К антисимметричным валептным колебаниям концевых групп $v_{as}PO_3$ следует отнести три полосы с частотами 1185, 1170, 1144 см⁻¹. Симметричным валентным колебаниям PO_2 -группировок в ИК спектре соответствует полоса 1096 см⁻¹, v_sPO_3 полоса 1014 см⁻¹ и слабо выраженное плечо на склоне полосы $v_{as}POP$ 992 см⁻¹. Валентные антисимметричные и симметричные колобалия POP группировок проявляются в виде двух полос $v_{as}POP$ (952, 900 см⁻¹) и двух полос v_sPOP (736, 665 см⁻¹).

Гексагидрат трифосфата натрия Na₅P₃O₁₀·6H₂O кристаллизуется в пространственной группе $P1(C_i^4)$ с двумя анионами $P_3O_{10}^{6-}$ в единичной ячейке [9]. Фактор-групповой апализ колебаний $P_3O_{10}^{6-}$ апионов Na₅P₃O₄₀· ·6H₂O приводит к результату, апалогичному полученному в случае Na.P.O.o-II. ИК спектры гексагидрата и безводной низкотемпературной молификации в области уРО идентичны (рис. 1), что подтверждает сходкое строение анионов P₃O₁₀⁵⁻ в этих соединениях. Согласно структурным данным [9] при гидратации безводного трифосфата натрия конформация аниона Р₃О₁₀⁵⁻ не изменяется. Представленный на рис. 2 порядок расположения атомов в анионе - с находящимися практически в одной плоскости всеми атомами фосфора (1, 6, 10) и атомами кислорода (2, 3, 7, 11) характерен и для Na₅P₃O₁₀-II, и для Na₅P₃O₁₀·6H₂O.

Пля расчета колебательных частот Na₅P₃O₁₀-II и Na₅P₃O₁₀·6H₂O были использованы однотипные силовые поля, по подбор значений силовых постоянных (табл. 2) проводили для каждого соединения раздольно с учетом экспериментальных данных по спектрам и рептионоструктурных данных. В ИК спектре Na₅P₃O₁₀·6H₂O симметричным и антисиммотричным колебаниям срединных группировок РО2 соответствует по одной полосе: 1214 см⁻¹ ($v_{as}PO_{2}$) и 1100 см⁻¹ ($v_{s}PO_{2}$). Колебаниям $v_{as}PO_{3}$ соответствуют три полосы 1156, 1128, 1080 см⁻¹. К v_sPO₃ мы относим дна една различимых в ИК спектре плеча 1015 и 995 см-4, в спектре КР в этом интервале частот проявляется очень интенсивная линия 992 см⁻¹. Колобаниям мостиков принадлежат полосы 961, 875 см⁻¹ (vasPOP) и 769, 712 см⁻¹ (vaPOP).

Обращает на себя внимание появление плеча переменной интопсивности 905 см⁻¹ на полосе v_{as}POP 875 см⁻¹ в спектре гексагидоата, получениего путем гидратации в парах воды безводного Na₅P₃O₁₀-II. Остальные полосы не изменяются. Отнесение этого плеча к примеси Na₅P₃O₁₀-11, который имеет в этой области очень интенсивную полосу 900 см⁻¹, сомпитольпо из-за отсутствия каких-либо других полос, характеризующих Na, P.O., --II, в частности, значительно отличающихся по частотам полос v, POP. Связь плеча 905 см⁻⁴ с колебаниями протонсодержащих группировок тробует дополнительных доказательств.

ИК спектр высокотемпературной модификации безводного трифосфата натрия Na₅P₃O₁₀-I (рис. 1) подобен в общих чертах спектрам Na₅P₃O₁₀--II и Na₅P₃O₁₀·6H₂O. Полосу 1216 см⁻¹ мы отнесли к антисимметричным валентным колебаниям PO₂ группировок, полосу 1148 см⁻¹ – к v_{as}PO₃, полосу 1092 см⁻¹ — к v_sPO₂. Очень слабые полосы 1020, 989 см⁻¹ отнесли к v_s PO₃, полосу 912 см⁻¹ — к v_{as} POP, полосы 752, 709 см⁻¹ — к v_s POP. Подобие спектров безводных и гидратированного трифосфата натрия следует ожидать из анализа их структурных данных [10], которые показывают, что $Na_5P_3O_{10}-I$ кристаллизуется в той же пространственной группе C2/cс z=4, что и Na₅P₃O₁₀-II. Однако в этой работе значения длин связей РО в срединных группировках PO₂ (1,52 Å) существенно больше значений длин связей РО в концевых группировках РО₃ (1,45-1,49 Å) при сходных угловых характеристиках. Расчет с использованием указанных в [10] кинематических параметров и корреляции kPO-rPO приводит к противоречивому отнесению полос. В связи с этим было бы желательно уточнение структуры Na₅P₃O₁₀-I. К выводу о целесообразности повторного определения структуры Na₅P₃O₁₀-I пришли авторы [11] при исследовании спектров ЯМР высокого разрешения ³¹Р в трифосфатах натрия.

Таким образом, каждый из трифосфатов натрия: Na₅P₃O₁₀--I, Na₅P₃O₁₀--II. Na₅P₃O₁₀·6H₂O — имеет характерный ИК спектр, что делает возможным применение ИК спектроскопии для идентификации как индивидуальных форм трифосфата натрия, так и их смесей. Так, например, при синтезе Na₅P₃O₁₀-I часто в качестве примеси содержится Na₅P₃O₁₀-II. В ИК спектре при этом регистрируется ряд дополнительных полос, в частности, вместо двух полос v_s POP наблюдаются четыре (752, 734, 709, 674 см⁻¹).

Литература

- Bues V. W., Gehrbe H.-W. // Z. anogr. allg. Chem. 1956. B. 288. S. 291.
 Corbridge D. E. C., Lowe E. J. // J. Chem. Soc. 1954. № 2. P. 493.
 Vu Thi Bich, Prod'homme M., Jouan M., Nguen Quy Dao. Verres Refract. 1984. V. 38. № 6. P. 927.
- Pampuch R., Gallus-Olender // J. Pr. Komis. ceram. P/W Krakowie Ceram. 1971. № 17. S. 77.

- Кириллов Ю. Б., Петров К. И. // Журн. неорган. химии. 1973. Т. 18. № 7. С. 1824.
 Davies D. R., Corbridge D. E. C. // Асtа Сгузt, 1958. V. 11. № 5. Р. 315.
 Грибов Л. А., Дементьев В. А. Методы и алгоритмы вычислений в теории колебательных спектров молекул. М.: Наука, 1981. 356 с.
 Лазарев А. Н., Миргородский А. П., Иснатьев И. С. Колебательные спектры сложных окислов. Л.: Наука, 1975. '296 с.
 Wiench D. M., Jansen M., Hoppe R. // Z. anogr. allg. Chem. 1982. В. 488. S. 80.
 Corbridge D. E. C. // Acta Cryst. 1960. V. 13. № 3. Р. 263.
 Naybenreisser U., Scheler G. // Z. anogr. allg. Chem. 1986. В. 532. № 1. S. 157.

Белорусский технологический институт им. С. М. Кирова

Поступила в редакцию 14.VII.1987