Том 34

1989

Вып. 7

УДК 661.635.53:661.872.9

ПРОДАН И.Е., ЕЩЕНКО Л.С., ПЕЧКОВСКИЙ В.В.

ИЗУЧЕНИЕ КРИСТАЛЛИЗАЦИИ ФОСФАТОВ ЖЕЛЕЗА В СИСТЕМЕ ЖЕЛЕЗО(III) — ФОСФОРНАЯ КИСЛОТА — ВОДА

Исследованы условия кристаллизации индивидуальных гидрофосфатов желева $Fe(H_2PO_4)_3$, $Fe(H_2PO_4)_3 \cdot 2H_2O$, $Fe_3(H_2PO_4)_7(HPO_4) \cdot 4H_2O$, $Fe(H_2PO_4)(HPO_4) \cdot 2,5H_2O$ в зависимости от концентрации фосфорной кислоты и температуры. Полученные результаты свидетельствуют о наличии взаимосвязи между составом и структурой твердых фаз и состоянием ионов в растворе.

Расширение областей применения фосфатов многовалентных металлов, в частности железа, делает все более актуальными вопросы направленного получения этих соединений с заданным составом и структурой. Синтезу фосфатов железа (III) посвящено много работ [1-7]. Однако данные об условиях осаждения и составе твердых фаз противоречивы и неоднозначны. До настоящего времени задача получения индивидуальных ортофосфатов железа, особенно гидрофосфатов, остается сложной и до конца не решенной, так как процесс их кристаллизации осложнен протеканием побочных реакций, образованием метастабильных фаз и длительным достижением истинного равновесия.

В настоящее время гидрофосфаты железа (III) выпускаются в виде реактивных солей. Однако их анализ показал, что они не являются стехиометрическими соединениями, а представляют собой сложные смеси, брутто-состав которых отвечает требованиям ТУ.

В связи с этим целью данной работы явилось изучение условий кристаллизации индивидуальных гидрофосфатов железа(III).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворы готовили путем насыщения фосфорной кислоты различной концентрации (5—15 молей) аморфными свежеосажденными гидроксидом или средним фосфатом железа при непрерывном перемешивании и нагревании, после чего их выдерживали при температуре 25 и 70° С до достижения равновесия в системе. Поскольку исследуемые растворы обладают высокой вязкостью, то истинное равновесие устанавливается крайне медленно, поэтому кристаллизацию проводили в течение 2—3 мес. Полученные осадки отделяли от маточного раствора, промывали обезвоженным и дважды перегнанным ацетоном до отсутствия P_2O_5 в промывной жидкости, продували осушенным воздухом и анализировали на содержание Fe_2O_3 и P_2O_5 фотоколориметрически по стандартным методикам.

Рентгенофазовый анализ продуктов осуществляли на дифрактометре ДРОН-05 с отфильтрованным железным излучением при скорости сканирования 2 град/мин. ИК спектры образцов записывали на спектрофотометре UR-20 в области 400—4000 см⁻¹ с использованием призм из КВг и NaCl. Концентрация вещества в таблетках из КВг составляла 0,1 масс. %. Электронно-микроскопический анализ проводили с помощью микроскона УЭВМ-100Л по методу углеродных реплик.

Результаты анализа кристаллических фаз, полученных из железофосфатных растворов при различных условиях, приведены в табл. 1 и 2. Основными варьируемыми параметрами при синтезе фосфатов железа

Таблица 1

Условия синтеза, состав и структура фосфатов железа, полученных в системе Fe(OH)₃ – H₃PO₄ – H₂O

Условия синтеза					Состав и структура осадков			
СH рО. моли	мольное отноше- ние Р ₂ О ₅ : . Fe ₂ O ₃	рН	t, °C	время, сут.	мольное отношение Fe ₂ O ₃ : P ₂ O ₅ : H ₂ O	данные рентгенофазового анализа		
45,75 13,65 11,84 10,15 9,13 7,25 5,15 3,35 15,75 13,65 11,84 10,15 7,25	$\begin{array}{c} 9,00\\ 7,61\\ 6,06\\ 5,40\\ 4,65\\ 4,07\\ 4,03\\ 4,08\\ 9,00\\ 7,61\\ 6,06\\ 5,40\\ 4,07\end{array}$	$\begin{array}{c} <-4,00\\ <-1,00\\ <-4,00\\ -0,81\\ -0,69\\ -0,42\\ -0,20\\ 0,22\\ <-1,00\\ <-1,00\\ <-1,00\\ <-1,00\\ -0,78\\ -0,37\end{array}$	25 25 25 25 25 25 25 25 70 70 70 70 70 70	$\begin{array}{c} 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ \end{array}$	$\begin{array}{c} 1,00:3,02:6,08\\ 1,00:3,09:6,18\\ 1,00:3,00:10,40\\ 1,00:2,67:8,06\\ 1,00:1,99:8,07\\ 1,00:1,99:8,07\\ 1,00:1,99:8,07\\ 1,00:1,05:3,78\\ 1,00:3,05:6,06\\ 1,00:2,89:6,43\\ 1,00:2,89:6,43\\ 1,00:1,92:6,95\\ 1,00:1,92:6,95\\ 1,00:1,06:4,52\\ \end{array}$	Fe (H ₂ PO ₄) ₃ (A) Fe (H ₂ PO ₄) ₃ (A) He идентифицирована Fe ₃ H ₄ (H ₃ O) (PO ₄) ₈ ·3H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O FePO ₄ ·2H ₂ O (фосфосидерит) Fe (H ₂ PO ₄) ₃ (B) Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O FePO ₄ ·2H ₂ O (фосфосидерит)		
13,59 10,86	6,41 5,04	< -1,00 < -1,00	100 100	10 10	1,00 : 1,97 : 8,12 1,00 : 0,96 : 4,30	Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ ·6H ₂ O FePO ₄ ·2H ₂ O (фосфосидерит)		

Таблица 2

Условия синтеза, состав и структура фосфатов железа, полученных в системе $FePO_4 - H_3PO_4 - H_2O$

Условин синтеза					Состав и структура осадков			
C H PO.	мольное отноше- ние Р ₂ О ₅ : : Fe ₂ O ₃	рН	t, ℃	время, сут.	мольное отношёние Fe ₂ O ₃ : P ₂ O ₅ : H ₂ O	данные ренттенофазового анализа		
15,45 12,00 8,83 6,58 3,93 15,45	10,58 8,56 6,55 4,38 3,91 10,58	<-1.00 <-1.00 -0.78 -0.30 -0.08 <-1.00	25 25 25 25 25 25 70	70 70 70 70 70 60	1,00:3,06:6,11 $1,00:3,01:10,24$ $1,00:1,96:7,53$ $1,00:1,91:7,28$ $1,00:1,03:4,30$ $1,00:3,05:6,35$	Fe (H ₂ PO ₄) ₃ (A) Не идентифицирована Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ .6H ₂ O Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ .6H ₂ O FePO ₄ .2H ₂ O (фосфосидерит) Fe (H ₂ PO ₄) ₃ (B)		
$13,94 \\ 12,00$	10,70 8,56	< -1.00 < -1.00	70	60 60	1,00:2,96:6,65 1,00:2,99:10,12	Ге (H ₂ PO ₄) з (В) Не идентифицирована		
8,83 6,58		-0,74 -0,25	70 70	60 60	1,00 : 1,98 : 7,85 1,00 : 1,01 : 4,15	Fe ₃ H ₈ (H ₃ O) (PO ₄) ₆ .6H ₂ O FePO ₄ .2H ₂ O (фосфосидерит)		

были концентрация фосфорной кислоты и температура кристаллизации. Поскольку степень насыщения фосфорной кислоты железосодержащим реагентом возрастает при уменьшении концентрации, то вследствие этого закономерно изменялось и соотношение P_2O_5 : Fe_2O_3 в растворе. В табл. 1 и 2 приведены составы тех растворов, которые отвечают кристаллизации индивидуальных соединений, идентифицированных с помощью химического и рентгенофазового анализов. В промежуточных областях концентраций наблюдалось образование сложных смесей.

Согласно полученным данным, в концентрированных растворах фосфорной кислоты (выше 13 молей) происходит кристаллизация фосфата железа состава $Fe_2O_3 \cdot 3P_2O_5 \cdot 6H_2O$ или $Fe(H_2PO_4)_3$. Структура $Fe(H_2PO_4)_3$ и изоструктурной соли $Al(H_2PO_4)_3$ изучена Дивуаром [8], который выделил четыре (A, B, C, D) ромбоэдрических вида кристаллов, отнесенных к гексагональной сингонии. По данным рентгенофазового анализа (табл. 3), в исследуемой системе при 25° С кристаллизуется дигидрофосфат железа модификации A, а при 70° С — модификация B. Электронно-микроскопические фотографии, приведенные на рис. 1, показывают, что кристаллы обеих модификаций имеют форму ромбовидных пластинок. Идентичны и ИК спектры данных соединений, представленные на рис. 2. При этом наблюдается расщепление полос валентных колебаний тетраэдра PO_4 в области 900—1150 см⁻¹ и наличие полос деформационных ко-

Таблица 3

Рентгенометрические данные для синтезированных фосфато	тов железа
--	------------

FePO ₄ ·2H ₂ O		Fe (H ₂ PO ₄) (HPO ₄) · · 2,5H ₂ O				Fe (H	$ Fe (H_2PO_4)_3 \cdot 2H_2O $		$ \begin{array}{c} \operatorname{Fe}(\mathrm{H}_{2}\mathrm{PO}_{4})_{3} \\ (A) \end{array} $		Fe (H ₂ PO ₄) ₃ (B)	
<i>d</i> , A	I	d, A	I	d, A	I	d, A	1	d, A	I	d, Å	I	
$\begin{array}{c} 7,18\\ 6,51\\ 4,91\\ 4,69\\ 4,55\\ 4,37\\ 4,10\\ 3,34\\ 2,79\\ 2,56\\ 2,34\\ 2,79\\ 2,56\\ 2,34\\ 2,26\\ 2,12\\ 2,01\\ 1,81\\ 1,77\\ 1,53\\ 1,67\\ 1,53\\ \end{array}$	7 28 44 61 15 100 16 36 10 83 26 9 7 10 16 7 10 9 7 7 7	$\begin{array}{c} 8,56\\ 7,95\\ 7,25\\ 5,82\\ 4,62\\ 4,07\\ 3,60\\ 3,25\\ 3,11\\ 2,97\\ 2,84\\ 2,62\\ 2,44\\ 2.30\\ 2,06\\ 1,88\\ 1,73\\ 1,62\\ 1,60\\ 1,53\\ \end{array}$	$\begin{array}{c} 10\\ 15\\ 100\\ 53\\ 63\\ 10\\ 16\\ 50\\ 100\\ 16\\ 38\\ 20\\ 10\\ 9\\ 16\\ 11\\ 20\\ 13\\ 9\\ 10\\ \end{array}$	$\begin{array}{c} 8,86\\ 7,56\\ 6,90\\ 5,79\\ 4,55\\ 4,41\\ 4,20\\ 3,83\\ 3,74\\ 3,30\\ 3,24\\ 3,10\\ 3,01\\ 2,96\\ 2,94\\ 2,83\\ 2,80\\ 2,75\\ 2,40\\ 2,05\\ \end{array}$	100 7 21 10 14 11 14 15 33 34 27 23 19 14 10 7 7 7 7	$\begin{array}{c} 11,78\\ 8,86\\ 7,67\\ 4,92\\ 4,40\\ 3,88\\ 3,77\\ 3,75\\ 3,38\\ 3,25\\ 3,08\\ 3,03\\ 2,95\\ 2,84\\ 2,67\\ 2,59\\ 2,38\\ \end{array}$	43 100 8 10 6 38 34 31 8 6 13 23 15 5 7 5 5 5	$\begin{array}{c} 8,86\\ 7,70\\ 6,13\\ 4,71\\ 4,25\\ 4,04\\ 3,64\\ 3,74\\ 3,36\\ 3,06\\ 2,93\\ 2,34\\ 2,32\\ 2,34\\ 2,32\\ 2,34\\ 2,32\\ 1,73\\ 1,57\\ 1,55\\ 1,52\\ 1,43\\ 1,34\\ \end{array}$	$\begin{array}{c} 84\\ 5\\ 100\\ 17\\ 9\\ 8\\ 49\\ 5\\ 12\\ 80\\ 38\\ 5\\ 7\\ 34\\ 5\\ 5\\ 5\\ 5\\ 4\\ 7\\ 6\end{array}$	8,93 7,76 3,97 3,75 3,50 3,34 3,27 3,02 2,96 2,79 2,41 2,31	$\begin{array}{c} 64\\ 48\\ 8\\ 15\\ 25\\ 32\\ 100\\ 48\\ 65\\ 20\\ 5\\ 60\\ 12\\ 20\\ 12\\ 15\\ \end{array}$	

лебаний групп РОН при 1260 и 2360 см⁻¹, что указывает на низкую тетраэдрическую симметрию гидрофосфатных анионов. В области колебаний молекул воды проявляется слабое диффузное поглощение.

Снижение концентрации фосфорной кислоты до значений 11-13 молей приводит к кристаллизации фосфата железа состава $Fe_2O_3 \cdot 3P_2O_5 \cdot 10H_2O$ или $Fe(H_2PO_4)_3 \cdot 2H_2O$. О синтезе этого соединения известно в литературе [1, 3], но рентгенометрические данные для него отсутствуют. Согласно рентгенофазовому анализу (табл. 3), существует структурное подобие кристаллогидрата $Fe(H_2PO_4)_3 \cdot 2H_2O$ и описанного выше дигидрофосфата $Fe(H_2PO_4)_3$, хотя при этом наблюдается небольшое смещение ряда рефлексов и перераспределение их интенсивности. Подобие проявляется и в форме кристаллов указанных соединений (рис. 1). В то же время ИК спектр $Fe(H_2PO_4)_3 \cdot 2H_2O$ (рис. 2) более сложен и свидетельствует об увеличении степени искажения фосфатных тетраэдров и участии молекул воды в сильных водородных связях.

При концентрации фосфорной кислоты 10 молей и 25° С выделена фаза состава $3Fe_2O_3 \cdot 8P_2O_5 \cdot 24H_2O$ (табл. 1, 2). Противоречивость имеющихся в литературе рентгенометрических данных для гидрофосфатов железа затруднила однозначную идентификацию полученного соединения. Набор межплоскостных расстояний для фосфата $3Fe_2O_3 \cdot 8P_2O_5 \cdot 24H_2O$ (табл. 3) оказался наиболее близким к аналогичным данным для изоструктурных солей (Fe, Al)₃H₁₄(Na, K, NH₄, H₃O) (PO₄)₈·3-4H₂O [9]. ИК спектры этих солей, приведенные в работе [10], также близки к ИК спектру синтезированного фосфата (рис. 2). Полученные данные позволили описать его состав формулой $Fe_3(H_2PO_4)_7(HPO_4) \cdot 4H_2O$. Согласно электронно-микроскопическому анализу (рис. 1), кристаллы данного соединения не имеют определенной формы.

При концентрации кислоты 5–9 молей (25° С) и 9–12 молей (70° С) получен фосфат железа состава $Fe_2O_3 \cdot 2P_2O_5 \cdot 8H_2O$. Рентгенограмма этого фосфата (табл. 3) близка к рентгенограмме изоструктурных соединений (Fe, Al)₃(K, NH₄, H₃O)H₈(PO₄)₆·6–7H₂O, обладающих гексагональной структурой, а также соли AlH₃(PO₄)₈·3H₂O [8, 9], но не совпадают с рентгенограммой для FeH₃(PO₄)₂·2,5H₂O, описанной в работе [4]. ИК спектр фосфата $Fe_2O_3 \cdot 2P_2O_5 \cdot 8H_2O$ также аналогичен спектрам соединений состава Fe_3 (NH₄, K)H₈(PO₄)₆·6H₂O [10]. При этом по сравнению со спектрами описанных выше фосфатов железа наблюдается упрощение спектра в области валентных колебаний тетраэдра PO₄, свидетельствующее о по-

Рис. 1. Микрофотографии фосфатов желева. $1 - \phi$ осфосидерит FePO₄·2H₂O, (×12 500), $2 - Fe(H_2PO_4)$ (HPO₄)·2,5H₂O (×12 500), $3 - Fe_3(H_2PO_4)_7$ (HPO₄)·4H₂O (×14 500), $4 - Fe(H_2PO_4)_3$ ·2H₂O (×7 000), $5 - Fe(H_2PO_4)_3$ (A, ×4 500), $6 - Fe(H_2PO_4)_3$ (B, ×7 000)

вышении симметрии ортофосфатных анионов в данном соедипении, а также увеличение интенсивности поглощения молекул воды. Как видно из рис. 1, кристаллы соли $Fe_2O_3 \cdot 2P_2O_5 \cdot 8H_2O$ имеют форму искаженных шестигранных пластинок. На основании полученных данных и факта изоструктурности гидрофосфатов железа и алюминия это соединение следует считать смешанным фосфатом $Fe(H_2PO_4)(HPO_4) \cdot 2,5H_2O$.

Уменьшение концентрации фосфорной кислоты ведет к кристаллизации моноклинной модификации среднего фосфата $FePO_4 \cdot 2H_2O$ (фосфосидерит). Интервал концентраций H_3PO_4 , в котором начинается образование средней соли, зависит от температуры процесса, так как повышение температуры снижает ее растворимость и расширяет область образования [11]. Как видно из табл. 1 и 2, при 25° С этот интервал составляет 3–4 молей при 70° С – 7–8 молей, а при 100° С – 10–11 молей. В то же время область кристаллизации гидрофосфатов железа сужается и сдвигается в сторону более высоких концентраций, что может свидетельствовать о повышении их растворимости с ростом температуры.

Сравнение состава кристаллических фаз, образующихся в системах Fe(OH)₃ — H₃PO₄ — H₂O и FePO₄ — H₃PO₄ — H₂O, показало, что природа железосодержащего реагента практически не влияет на фазовый состав осадков, а определяющую роль при кристаллизации индивидуальных гидрофосфатов играют концентрация фосфорной кислоты и температура.

Рис. 2. ИК спектры фосфатов железа. $1 - \phi$ осфосидерит FePO₄·2H₂O, $2 - Fe(H_2PO_4) \cdot (HPO_4) \cdot 2,5H_2O$, $3 - Fe_3(H_2PO_4) \cdot (HPO_4) \cdot 4H_2O$, $4 - Fe(H_2PO_4) \cdot 2H_2O$, $5 - Fe(H_2PO_4) \cdot (A)$, $6 - Fe(H_2PO_4) \cdot (B)$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Известно [12-17], что такие факторы, как концентрация, температура, pH, оказывают существенное влияние на процессы диссоциации фосфорной кислоты в водных растворах и ее комплексообразования с ионами железа(III). Можно полагать, что состав и структура кристаллизующихся фаз определяются состоянием комплексов в растворе.

По данным [12, 13], в растворах фосфорной кислоты в зависимости от концентрации образуются как мономерные анионы $(H_2PO_4^-, HPO_4^{2-}, PO_4^{3-})$ и недиссоциированные молекулы, так и различные димерные формы $(H_8P_2O_8, H_5P_2O_8^-, H_4P_2O_8^{2-}, H_3P_2O_8^{3-})$. При концентрации фосфорной кислоты выше 10 молей она практически полностью присутствует в растворе в виде димерных молекул и анионов. Согласно [14], взаимодействие ортофосфатных димеров с ионами железа (III) происходит путем отрыва иона $H_2PO_4^-$ и комплексообразования с мономерными ионами. Известно также [3], что в высококонцентрированных растворах (выше 13 молей H_3PO_4) фосфатные лиганды полностью вытесняют аквагруппы из ближайшего окружения иона железа (III) и образуют комплексы с тремя фосфатными лигандами, например $Fe(H_2PO_4)_3^{\circ}$ или $Fe(HPO_4)_3^{3-}$. Можно полагать, что именно такие комплексные формы являются структурными единицами при кристаллизации осадка состава $Fe(H_2PO_4)_3$.

Хорошо изучены и сбласти преобладания аквафосфатных комплексов с одним фосфатным лигандом: в разбавленных растворах наиболее устойчивы комплексы FeH₂PO₄²⁺ и FeHPO₄⁺ [15-17]. Как показали полученные экспериментальные данные (табл. 1 и 2), в таких растворах происходит кристаллизация среднего фосфата железа FePO₄·2H₂O. В пироком интервале концентраций фосфорной кислоты между областями существования монофосфатных аквакомплексов железа(III) и безводных трисфосфатных комплексов образуются смешанные формы промежуточного состава, которые представляют собой продукты последовательного замещения молекул воды в координационной сфере железа(III) ионами HPO_4^{2-} или $H_2PO_4^{-}$. Формированию разнолигандных комплексов способствует близость параметров электронной структуры гидрофосфатных ионов и молекул воды, что обусловлено тетраэдрической направленностью sp^3 -гибридных орбиталей атомов фосфора и кислорода в лигандах [18].

В концентрированных растворах фосфорной кислоты образуются комплексы, содержащие одну или две молекулы воды в координационной сфере железа (III), в которых группы H₂PO₄- могут быть связаны монои бидентатно [19]:

В этих условиях, согласно данным табл. 1 и 2, кристаллизация протекает с образованием кристаллогидрата Fe(H₂PO₄)₃. 2H₂O. Уменьшение концентрации растворов приводит к дальнейшему вытеснению фосфатных лигандов и образованию, в частности комплекса Fe(H₂PO₄)₂⁺:

Можно предположить, что появление таких комплексов в растворе обусловливает кристаллизацию смешанной соли Fe₃(H₂PO₄), (HPO₄) ·4H₂O, а в более разбавленных растворах — Fe (H₂PO₄) (HPO₄) 2,5H₂O. Как видно из табл. 1 и 2, кристаллизация индивидуального гидрофосфата состава Fe2(HPO4)3 nH2O не наблюдается. Для построения кристаллической решетки такого фосфата в растворе должны присутствовать комплексы Fe(HPO₄)₂⁻. Однако, по данным [17], при концентрации фосфорной кислоты 5-10 молей и pH<0 содержание этих комплексов в растворе гораздо ниже по сравнению с дигидрофосфатными формами $Fe(H_2PO_4)_2^+$, которые при отрыве протона и образуют смешанные комплексы.

Такие представления о взаимосвязи процессов комплексообразования и кристаллизации позволяют объяснить и влияние температуры на состав фосфатов железа. Согласно [14], рост температуры вызывает уменьшение содержания фосфатных димеров и увеличение степени диссоциации кислоты и ионизации воды. Это приводит к повышению концентрации мономерных форм и росту содержания комплексов FeH₂PO₄²⁺ и FeHPO₄⁺, обусловливающих кристаллизацию при 70° С среднего фосфата железа в тех же растворах, в которых при 25° С наблюдалось образование гидрофосфатов. Для достижения при повышении температуры того же содержания димерных фосфатных форм, что и при 25°С, необходимо увеличение концентрации раствора и его кислотности, что согласуется с полученными экспериментальными данными.

Высказанные предположения о взаимосвязи между составами фосфатных комплексов железа (III) и образующихся осадков подтверждены исследованиями состояния ионов в железофосфатных растворах.

- Литература 1. Carter S. R., Hartshorne N. H.// J. Chem. Soc. 1923. V. 123. № 2. Р. 2223. 2. Бруцкус Е. Б. // Тр. НИУИФ. 1937. Вып. 137. С. 110. 3. Jameson R. F., Salmon J. E. // J. Chem. Soc. 1954. Р. 28. 4. Набиев М. Н., Касымова М. А. // Узб. хим. журн. 1963. № 6. С. 9. 5. Синтезы неорганических соединений. М.: Мир, 1967. Т. 2. 352 с. 6. Ковауаshi E. // Repts. Govt. Chem. Ind. Res. Inst. Tokyo. 1971. V. 66. № 9. Р. 326. 7. Mitsutomo T., Chinuyo O., Tsuneo M.// Nippon kagaky kaishi. J. Chem. Soc. Jap. Chem. and Ind. Chem. Soc. 1980. № 2. Р. 176. 8. d'Yvoire F. // Bull. Soc. Chim. France. 1961. № 12. Р. 2277
- 8. d'Yvoire F. // Bull. Soc. Chim. France. 1961. № 12. P. 2277.

- d'Yvoire F. // Bull. Soc. Chim. France. 1961. № 12. Р. 2277.
 ASTM X-Ray Powder Data Tile Philadelphia.
 Arlidge E. Z., Farmer V. C., Mitchell B. D. // J. Appl. Chem. 1963. V. 13. № 1. Р. 17.
 Tananaee H. B., *Чудинова Н. Н.* // Журн. неорган. химин. 1962. Т. 7. № 10. С. 2285.
 Elmore K. L., Hatfield J. D., Dunn R. L. // J. Phys. Chem. 1965. V. 69. № 10. Р. 3520.
 Heakuh A. A., Bopohosa J. M. // Журн. неорган. химин. 1973. Т. 18. № 4. С. 885.
 Филатова Л. Н. и др. // Журн. фвз. химин. 1980. Т. 54. № 1. С. 179.
 Филатова Л. Н. // Тр. ИРЕА. 1974. Вып. 36. С. 164.
 Galal-Gorchev H., Stumm W. // J. Inorg. Nucl. Chem. 1963. V. 25. Р. 567.
 Lahiri S. C. // J. Indian Chem. Soc. 1965. V. 42. № 10. Р. 715.
 К рестов Г. А. Термодинамика ионных процессов в растворах. Л.: Химия, 1984.
 Филатова Л. Н. // Тез. докл. VI Всесоюз. конф. по фосфатам. Алма-Ата, 1984. Т. 2. С. 408. C. 408.

Белорусский технологический институт имени С. М. Кирова

Поступила в редакцию 15.II.1988