УДК 546.681:661.635

Продан И. Е., Ещенко Л. С., Печковский В. В. ПРОЦЕССЫ И ПРОДУКТЫ ТЕРМООБРАБОТКИ ФЕРРИФОСФАТНЫХ ГЕЛЕЙ

Важной стадией приготовления сорбентов и катализаторов является гермическая обработка, позволяющая регулировать их пористую структуру. В большинстве работ в этой области исследованы оксидные и гидроксидные сорбенты и установлен ряд общих закономерностей, которые можно использовать при синтезе новых классов сорбентов [1-3].

В [4] описаны условия золе- и гелеобразования в железо(III)- и фосфатсодержащих водных растворах. В настоящей работе рассмотрены процессы, протекающие при термообработке феррифосфатных гелей.

Термический анализ гелей осуществляли на дериватографе системы «Паулик». Скорость нагревания образцов составляла 5 град/мин, навески 0,6—0,8 г. Рентгенофазовый анализ проводили на дифрактометре ДРОН-05 с железным излучением. Величину удельной поверхности образцов определяли хроматографическим методом по тепловой десорбции аргона [5].

Термической обработке подвергали феррифосфатные гели переменного состава, полученные по методике [4] разложением мочевины в нитратных растворах соли железа и фосфорной кислоты до рН 5-6, включая стадиюсозревания гидрогелей для стабилизации их структуры.

В табл. 1 приведены данные о влиянии термической обработки воздушно-сухих феррифосфатных гелей на величину их удельной поверхности. Видно, что независимо от состава исследуемых гелей наблюдается экстремальная зависимость величины удельной поверхности от температуры прокаливания. Сначала с ростом температуры обработки образцов увеличивается удельная поверхность, достигающая максимальной величины при $300-400^{\circ}$ С. С дальнейшим повышением температуры удельная поверхность уменьшается, причех особенно резко при $t > 500^{\circ}$ С.

Кривые нагревания гелей (ДТА) показаны на рис. 1. Эндотермические эффекты на этих кривых при 60-200° С связаны с дегидратацией феррифосфатных гелей. За ними в интервале 200-400° С следуют размытые налагающиеся один на другой эндо- и экзоэффекты, которые также сопровождаются потерей массы образцов. Эндотермические эффекты в этой температурной области обусловлены разложением примесей, которыми могут быть нитрат аммония (продукт реакции) и остатки неразложившейся мочевины. При термическом разложении этих веществ выделяются аммиак и оксиды азота [6]. В этом температурном интервале на поверхности образующихся феррифосфатных ксерогелей происходит, по-видимому, каталитическое окисление аммиака кислородом воздуха, обусловливающее возникновение экзоэффектов на кривых ДТА. Аналогичное явление наблюдали при термообработке аморфных фосфатов железа, осажденных аммиаком [7].

Потеря массы гелями при нагревании до 350-400° С за счет обезвоживания и удаления продуктов разложения примесей составляет 95-99% от общей потери массы в зависимости от состава образцов. Химически связанная остаточная вода выделяется из феррифосфатных ксерогелей в более широком температурном интервале вплоть до их кристаллизации. Процесс кристаллизации гелей вызывает появление экзотермических эффектов выше 550° С. Температуры начала кристаллизации и характер термограмм в этой области зависят от химического состава гелей (рис. 1).

Данные рентгенофазового анализа продуктов термообработки феррифосфатных гелей при различных температурах представлены на рис. 2 и в табл. 2. Согласно приведенным данным, кристаллизация геля с *n*, равным 0,10, сопровождающаяся экзотермическим эффектом при 725° С, обусловлена образованием α-модификации оксида железа. При 900° С появляется

Влияние термической обработки на величину удельной поверхности гелеобразных феррифосфатов

	Удельная поверхность, м ² /г						
P ₂ O ₅ : Fe ₂ O ₃ : NH ₃ (мольное)	100° C	200° C	300° C	400° C	500° C	600° C	
$\begin{array}{c} 0,12:1,00:0,07\\ 0.20:1,00:0,09\\ 0,29:1,00:0,10\\ 0,40:1,00:0,25\\ 0,50:1,00:0,32\\ 0,61:1,00:0,42\\ 0,68:1,00:0,63\\ \end{array}$	75 137 105 114 111 96 72	150 300 381 268 210 217 211	285 352 456 450 438 341 280	302 364 438 403 310 263 230	242 230 200 120 90 79 62	53 30 12 2 3 5 9	

Таблица 2

Данные рентгенофазового анализа для продуктов термообработки гелеобразных феррифосфатов, аморфного гидроксида, фосфата железа и их механической смеси

n	¹ обр, °С	Кристаллические фазы	n	ք _{оñp} , •Ը	Кристаллические фазы
1 1		and the second			
0,12	650	-	0,40	600	FePO ₄ (тридимит)
-	750	α -Fe ₂ O ₃		650	FePO ₄ (кварц)
	850	α-Fe ₂ O ₃	0.40	750	FePO ₄ (κварц), α-Fe ₂ O ₃
	950	α -Fe ₂ O ₃ , Fe ₂ O ₃ ·FePO ₄			$Fe_2O_3 \cdot FePO_4$
0,20	650	-		950	FePO ₄ (кварц), Fe ₂ O ₃ ·FePO ₄
10	750	α-Fe ₂ O ₃	0,50	600	FePO ₄ (тридимит)
	850	FePO ₄ (кварц), α-Fe ₂ O ₃		650	FePO4 (кварц)
-	950	α -Fe ₂ O ₃ , Fe ₂ O ₃ ·FePO ₄		750	FePO ₄ (кварц), Fe ₂ O ₃ ·FePO ₄
0,29	550	-		950	FePO ₄ (кварц), Fe ₂ O ₃ ·FePO ₄
	600	FePO ₄ (тридимит)	0,68	570	FePO ₄ (тридимит)
1	650	FePO4 (квард)		600	FePO4 (кварц)
	750	FePO ₄ (кварц), α-Fe ₂ O ₃ ,		750	FePO ₄ (кварц), Fe ₂ O ₃ ·FePO ₄
		Fe ₂ O ₃ ·FePO ₄		950	FePO ₄ (кварц), Fe ₂ O ₃ ·FePO ₄
	950	α -Fe ₂ O ₃ , Fe ₂ O ₃ ·FePO ₄	0	300	
0,33	550			400	α -Fe ₂ O ₃
	600	FePO ₄ (тридимит),		950	$\alpha - Fe_2O_3$
	650	FePO4 (кварц)	1,00	500	
	750	FePO ₄ (кварц), α-Fe ₂ O ₃ ,		550	FePO ₄ (тридимит)
		$Fe_2O_3 \cdot FePO_4$		650	FePO4 (кварц)
_	950	Fe ₂ O ₃ · FePO ₄		950	FePO ₄ (кварц)
			0,33	500	α -Fe ₂ U ₃
-	1.1	The I was a set of the	(Mexa-	600	$FePO_4$ (тридимит), α -Fe ₂ O ₃
			ская	750	FePO ₄ (кварц), α-Fe ₂ O ₃
1	1.1		смесь)	950	FePO ₄ (кварц), α-Fe ₂ O ₃

Примечание: n - мольное отношение P2O5: Fe2O3 в образце.

кристаллическая фаза Fe₂O₃-FePO₄, с чем, по-видимому, связано возникновение при этой температуре небольшого экзоэффекта на термограмме.

При кристаллизации геля с *n*, равным 0,20, сначала образуется α -Fe₂O₃, что сопровождается экзоэффектом при 710° C, а затем кристаллизуется безводный фосфат железа со структурой кварца, которому отвечает экзоэффект при 810° C. При дальнейшем повышении температуры в продуктах рентгенографическим методом фиксируется появление фазы Fe₂O₃. FePO₄ и исчезновение кварцеподобного фосфата железа, что свидетельствует о взаимодействии между Fe₂O₃ и FePO₄ до полного расходования последнего. Избыточный оксид железа обнаруживается рентгенографическим анализом.

Кристаллизация гелей с *n*, равными 0,29-0,68, начинается при более низких температурах. Уже при 550-600° С образуется безводный фосфат железа со структурой тридимита, который затем переходит в кварцеподобный фосфат железа, что проявляется на кривых ДТА в виде двух экзотермических эффектов при 570-600 и 600-640° С. Экзоэффект при 710° С, связанный с кристаллизацией α-Fe₂O₃, фиксируется на термограммах об-

Рис. 1. Термограммы гелеобразных феррифосфатов (1-8), аморфного гидроксида (9), фосфата железа (10) и их смеси (11) с мольными отношениями P₂O₅: Fe₂O₃ (n), равными 0,12 (1), 0,20 (2), 0,29 (3), 0,33 (4), 0,40 (5), 0,50 (6), 0,61 (7), 0,68 (8), 0 (9), 1,00 (10) и 0,33 (11)

разцов с $n \leq 0,4$. При кристаллизации геля с *n*, равным 0,50, он отсутствует и α-оксид железа рентгенографическим анализом не обнаруживается. Однако последующее образование фазы Fe₂O₃·FePO₄ и постепенный рост ее содержания при увеличении температуры свидетельствуют о наличии взаимодействия FePO₄ с α-Fe₂O₃, находящимся, по-видимому, в рентгеноаморфном состоянии. Размытые экзоэффекты в области 790-900° С на термограммах гелеобразных феррифосфатов, очевидно, обусловлены перестройкой кристаллических решеток FePO4 (кварц) и α -Fe₂O₃ в кубическую структуру Fe₂O₃·FePO₄. Это взаимодействие протекает вплоть до полного расходования одной из фаз и определяется химическим составом гелей. Так, при термообработке геля с n=0,29 на образование Fe₂O₃ · FePO₄ расходуется весь фосфат железа, а избыточный оксид остается в виде отдельной фазы, в то время как в случае гелей с $n \ge 0.4$ наблюдается полное исчезновение α-Fe₂O₃ и остается избыток FePO₄. Для образца с n=0,33 конечным продуктом термообработки будет Fe₂O₃·FePO₄, поскольку промежуточные фазы FePO₄ и Fe₂O₃ содержатся в эквивалентных количествах и реагируют полностью.

Важно отметить, что химический состав гелеобразных феррифосфатов определяет не только содержание различных кристаллических фаз, но и температурные области их кристаллизации. Так, начальная температура кристаллизации безводного фосфата железа, фиксируемая для образца с n=0,2 выше 800° С, сдвигается в более низкотемпературную область с увеличением содержания P_2O_5 в гелях. Это, по-видимому, обусловлено снижением энергетических и пространственных затруднений для образования кристаллической решетки FePO₄ с приближением к стехиометрическому

∘ ∏ XII 3,0 2,0 4,0 5,0 d.A

Рис. 2. Рентгенограммы продуктов прокаливания при 950° С аморфного гидроксида железа (1) и гелеобразных феррифосфатов (2-9) с мольными отношениями P₂O₅ : Fe₂O₃ (n), равными 0,12 (2), 0,20 (3), 029 (4), 0,33 (5), 0,40 (6), 0,50 (7), 0,61 (8) и 0,68 (9) (значками отмечены кристаллические фазы α-Fe₂O₃ (I), Fe₂O₃·FePO₄ (II) и FePO₄ (кварц) (III), идентифицированные по данным ASTM)

составу. В то же время температура кристаллизации α -Fe₂O₃ практически не изменяется.

Для сравнения определили области кристаллизации FePO₄ и α-Fe₂O₃ в рентгеноаморфных гидроксиде и фосфате железа (рис. 2, табл. 2). При обезвоживании аморфного гидроксида железа наблюдается эндоэффект при 130° C, а кристаллизация α-Fe₂O₃ сопровождается экзоэффектом при 370° C, что согласуется с литературными данными [1]. На термограмме аморфного фосфата железа состава FePO₄·3H₂O после эндоэффекта, обусловленного дегидратацией, возникают два экзоэффекта — при 510 и 630° C, связанные с кристаллизацией тридимитоподобного безводного фосфата железа и его переходом в кварцеподобный фосфат. По сравнению с аморфным гидроксидом железа гелеобразный гидроксид, модифицированный P2O5, обладает повышенной термостабильностью, и кристаллизация α-Fe₂O₃ в нем начинается только при 700° С.

Из сравнения термограмм и рентгенограмм продуктов термообработки гелей и механической смеси аморфных гидроксида и фосфата железа того же брутто-состава (рис. 2, табл. 2) видно, что в отличие от гелей, для которых характерно образование фазы Fe₂O₃ · FePO₄, механически смешанный образец кристаллизуется с образованием индивидуальных фаз FePO4 (кварц) и α-Fe₂O₃, взаимодействие которых в высокотемпературной области не происходит. Фаза Fe₂O₃·FePO4 ранее образовалась также при термообработке аморфных фосфатов железа переменного состава с мольным отношением P_2O_5 : Fe₂O₃<1.

Вероятно, феррифосфатные гели следует рассматривать как полимерные химические соединения, в которых атомы железа и фосфора координированы кислородом и прочно связанными ОН-группами. Выделение последних микроколичеств воды при их термообработке сопровождается распадом первоначальной структуры и кристаллизацией отдельных фаз фосфата и оксида железа. Эти фазы, по-видимому, вследствие высокой степени дисперсности и реакционной способности взаимодействуют с образованием кристаллической решетки Fe₂O₃·FePO₄, что не наблюдается в случае механического смешения компонентов.

Формирование феррифосфатных ксерогелей с развитой системой пор и большой внутренней поверхностью (табл. 1) происходит при термообработке гидрогелей в области 200-400° С в результате их обезвоживания и разложения примесей, захваченных при их образовании. Некоторое снижение удельной поверхности пористых феррифосфатов при дальнейшем повышении температуры связано с началом спекания ксерогелей, предшествующего их кристаллизации. Известно, что интенсивность процесса спекания дисперсного вещества тем больше, чем больше его поверхностная энергия [2]. Этим можно объяснить наблюдаемую для феррифосфатных ксерогелей зависимость скорости спекания от величины удельной поверхности (табл. 1). Образцы с небольшой удельной поверхностью при термообработке сохраняют внутреннюю пористость вплоть до их кристаллизации, в то время как гели с развитой поверхностью перед кристаллизацией спекаются довольно быстро.

выводы

Исследованы продукты термообработки феррифосфатных гелей и показано, что формирование ксерогелей с развитой удельной поверхностью происходит в интервале 200-400° С. Установлено, что конечными кристаллическими фазами в зависимости от состава гелей являются Fe₂O₃ FePO₄ и α-Fe₂O₃, либо FePO₄ (кварц). Температурная область кристаллизации α-Fe₂O₃ при термообработке гелеобразного гидроксида железа, полученного в присутствии небольших количеств фосфорной кислоты, сдвинута в сторону более высоких температур по сравнению с аморфным гидроксидом железа.

Литература

- 1. Ермоленко Н. Ф., Эфрос М. Д. Регулирование пористой структуры окисных адсорбентов и катализаторов. Минск: Наука и техника, 1971.
- 2. Комаров В. С., Дубницкая И. Б. Физико-химические основы регулирования пористой структуры адсорбентов и катализаторов. Минск: Наука и техника, 1981.
- Неймарк И. Е. Основные факторы, влияющие на пористую структуру гидроокисных и окисных адсорбентов. Коллоид. журн., 1982, т. 44, № 4, с. 780.
 Ещенко Л. С., Печковский В. В., Продан И. Е., Милицина Н. Б. Взаимодействие в системе соль железа (III) фосфорная кислота мочевина вода. Журн. неорган. химии, 1982, т. 27, № 3, с. 802.
 Буянова Н. Е., Гудкова Г. В., Карнаухов А. К. Определение удельной поверхности полник симом и симости и соста с Кинстика.
- твердых тел методом тепловой десорбции аргона. Кинетика и катализ, 1965, т. 6, № 6, с. 1085.

 Справочник азотчика. Т. 2./ Под ред. Симулина Н. А. М.: Химия, 1969.
 Ещенко Л. С., Печковский В. В., Продак И. Е. Влияние термообработки на состав и свойства ортофосфатов железа. – Изв. АН СССР. Неорган. материалы, 1980, т. 16, № 9, с. 1601.

Белорусский технологический институт им. С. М. Кирова

Поступила в редакцию 26.V.1983