Том 33

1988

УДК 543.42:546.18'32

МАЛАШОНОК И. Е., МЕЛЬНИКОВА Р. Я., ПЕЧКОВСКИЙ В. В., БУЛАВКИНА Н. В.

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ K₅P₃O₁₀ · 4H₂O, β-K₅P₃O₁₀ · 2H₂O И ПРОДУКТОВ ИХ ДЕГИДРАТАЦИИ

Методами колебательной снектроскопии, рентгенофазового анализа, комплексного термического анализа изучены $K_5P_3O_{10} \cdot 4H_2O$, β - $K_5P_3O_{10}$, $2H_2O$, β - $K_5P_3O_{10}$, $(2H_2O)$, (2

Трифосфаты калия находят применение в производстве синтетических моющих средств, используются в составе электролитов, в органическом и неорганическом синтезе. Целью настоящей работы является установление характера связи молекул воды в решетке K₅P₃O₁₀·4H₂O и β-K₅P₃O₁₀·2H₂O с применением методов колебательной спектроскопии, комплексного термического анализа, получение индивидуальных безводных β- и α-K₅P₃O₁₀ и изучение их физико-химических характеристик.

ИК спектры поглощения в области частот 400-4000 см⁻¹ были получены на приборе Specord-75 IR съемкой методом прессования образцов в бромистом калии. Учитывая высокую гигроскопичность трифосфатов калия, приготовление образцов к съемке проводили в сухом боксе над фосфорным ангидридом. Температурные измерения ИК спектров проводили в вакуумной кювете, охлаждаемой жидким азотом. Спектры комбинационного рассеяния получены на спектрометре Ramalog-4 с аргоновым лазером ($\lambda_{воз5}=514,5$ нм). Рентгенограммы регистрировали на дифрактометре Дрон-3 с медным катодом и никелевым фильтром. Термические превращения исследовали с применением метода дифференциальной термобарометрии, а также на дериватографе OD-103.

Одной из наиболее стабильных гидратированных форм среднего трифосфата калия является $K_5P_3O_{10} \cdot 4H_2O$, который способен без перестройки кристаллической решетки обратимо отдавать две молекулы воды с образованием β - $K_5P_3O_{10} \cdot 2H_2O$ [1]. Изоструктурность обоих гидратов, отмеченная в [1], подтверждается сходством их ИК спектров (рис. 1). Приведенные в табл. 1 значения частот максимумов полос поглощения для $K_5P_3O_{10} \cdot \cdot 4H_2O$ и β - $K_5P_3O_{10} \cdot 2H_2O$ отличается несущественно.

С целью идентификации колебаний протонсодержащих группировок получены ИК спектры гидратированных фосфатов при охлаждении образцов до температуры жидкого азота, а также использована методика дейтерозамещения. В области частот валентных колебаний молекул воды наблюдаются полосы ($t=-190^{\circ}$ C): 3405, 3300, 3248, 3084 см⁻¹ ($K_{5}P_{3}O_{10} \cdot 4H_{2}O$) и 3390, 3293, 3242, 3069 см⁻¹ (β - $K_{5}P_{3}O_{10} \cdot 2H_{2}O$), свидетельствующие об участии молекул воды в образовании водородных связей. Смещение самых низкочастотных полос v (OH) в длинноволновую область относительно v⁰ (OH) = 3700 см⁻¹ составляет более 600 см⁻¹, что отвечает образованию прочных водородных связей с энергией около 50 кДж/моль [2]. Рис. 1. ИК спектры погиощения К₅Р₃О₁₀ (Н₂О (1), К₅Р₃О₁₀ (Д₂О (2), ³-К₅Р₃О₁₀ 2Н₂О (2), ³-К₅Р₃О₁₀ 2H₂O (3) <u>и</u> спектр комбинационного рассеяния ³-К₅Р₃О₁₀ ² 2H₂O (4). Пунктирной линней представлены ИК спектры поглощовия при -190° С

di,

Значения	колебательных	частот	трифосфатов калия	(CM^{-1})
Ond rounds	ACOMO OCCA COMPANYA	INCICI	The ocharon mannes	(0.14

K5P3O10.4H2O K5P3O10.4		$_{10} \cdot 4 D_2 O$	$\beta\text{-}K_5P_3O_{10}\cdot 2H_2O$			β-Κ	β-K ₅ P ₃ O ₁₀		P ₃ O ₁₀		
ИК ИК		ИК		КР	ИК	KP	ИК КР				
+20° C	—190° C	+20° C	-190° C	+20° C	-190° C	+20° C	+20° C	+20° C	+20° C	+20° C	Отнесение
3410 3270 3105	3405 3300 3248 3084	2450 2415	2450 2415 2375 2298	3385 3300 3115	3390 3293 3242 3069) ν(OH)
1700 1623	1705 1626		1214	1715	1736 1698 1630						δ (HOH(DOD))
1236	1238	1235	1240	1236	1242	1240	1236	1256	1216	1207	$v_{as}(PO_2)$
1172 1160 1124 1110	1175 1160 1124 1110	1172 1160 1124 1110	1174 1160 1124 1110	1175 1165 1126 1112	1175 1165 1126 1112	1170 1123 1110	1170 1156 1142 1122	1170 1158 1135 1120	1145 1130	1150 1128	$\left.\right\} v_{as}(\mathrm{PO}_3)$
1096	1096	1096	1096	1098	1098	1096	1098	1097	1093	1093	$v_s(PO_2)$
1009 988	1009 988	1009 988	1009 988	1010 990	1010 990	1013 990	1016 997	1020 999	1013 996	1013 999	$\left.\right\} v_{s}(PO_{3})$
948 888	948 888	948 888	948 888	949 890	949 890	945	954 872	954	945 878	941 893	$\left. \right\} v_{as}(\text{POP})$
761	875 765	$\begin{array}{c} 697\\ 611 \end{array}$	703 614	758	876 767	- 3		p i			ρ (H ₂ O)
731 670	730 670	731 670	733 674	733 668	732 674	665	715 664	664	734 689	735	$\left.\right\} v_s(\text{POP})$
690 626 568	694 652 630 572		530 475 465	628 569	697 654 634 572			10 -	618	1	ρ(H ₂ O)
597 555 537 522 485 470	$ \begin{array}{r} 600 \\ 558 \\ 538 \\ 524 \\ 486 \\ 470 \\ \end{array} $	596 556 521 490 472	597 558 516 490 475	600 556 538 522 486 472	600 558 538 524 486 470	556 534 483 472	590 553 539 515 498 449	553 540 519 500 454	592 554 513 492 475	587 545 528 496 477	δ (P ₃ O ₁₀ ⁵⁻)

Полосы $\delta(\text{HOH})$ малоинтенсивны, при охлаждении их интенсивность незначительно возрастает и проявляются несколько максимумов: 1705, 1626 см⁻¹ (K₅P₃O₁₀·4H₂O) и 1736, 1698, 1630 см⁻¹ (β-K₅P₃O₁₀·2H₂O), что наряду с количеством полос v(OH) говорит о неэквивалентности энергетических состояний молекул воды в решетках гидратов. Свидетельством существования нескольких типов кристаллографически неэквивалентных молекул воды является также наличие большого числа частот либрационных колебаний молекул воды: 875, 765, 694, 652, 630, 572 см⁻¹ (K₅P₃O₁₀·4H₂O) и 876, 767, 697, 654, 634, 572 см⁻¹ (β-K₅P₃O₁₀·2H₂O). Достаточно высокие частоты полос $\rho(H_2O)$ (875, 765 см⁻¹) указывают на прочность связи молекул воды в решетке этих соединений как по водороду, так и по кислороду.

Спектроскопическое проявление молекул воды в тетра- и β -дигидрате трифосфата калия не позволяет установить существенных различий в связывании воды в обоих гидратах. Для установления этих различий мы применили метод дифференциальной термобарометрии, позволяющий исследовать динамику удаления воды [3]. На рис. 2 представлены кривые ДТБ $K_5P_3O_{10} \cdot 4H_2O$ и ρ - $K_5P_3O_{10} \cdot 2H_2O$, согласно которым обезвоживание обоих гидратов происходит в несколько стадий в широком температурном интервале от 140 до 400° С, что совпадает с многостадийным удалением воды в том же интервале температур по данным ДТА. На сложный механизм

β-K ₅ P ₃ O ₁₀		a-K5P3O10		β-K5P3O10		α -K ₅ P ₃ O ₁₀		β-K ₅ P ₃ O ₁₀		$\alpha - K_5 P_3 O_{10}$	
d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %
6,03 5,31 4,90 4,74 4,42 3,87 3,78 3,78 3,38 3,24 3,09 2,976	4 3 4 2 3 3 9 11 6 100	5,21 4,95 4,82 4,50 3,42 3,34 3,19 3,004 2,881 2,761 2,651	16 8 16 10 10 12 37 100 18 2 9	2,739 2,621 2,548 2,486 2,423 2,342 2,275 2,207 2,124 2,050 2,020	$ \begin{array}{c} 65 \\ 2 \\ 12 \\ 6 \\ 6 \\ 19 \\ 2 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	2,532 2,479 2,402 2,345 2,221 2,138 2,068 2,017 1,978 1,953 1,915	6 20 5 4 35 15 5 1 3 6 7	1,929 1,857 1,779 1,692 1,675 1,644 1,620	18 11 11 3 4 15	1,824 1,751 1,737 1,723 1,684 1,678 1,635 1,621 1,596 1,579 1,500	9 6 7 8 6 5 2 2 3 4 8
2,896	16	2,590	15	1,985	1	1,868	5				1.1

Межплоскостные расстояния и относительная интенсивность дифракционных линий β- и α-K₅P₃O₁₀

обезвоживания гидратированных трифосфатов калия указали авторы [4] при исследования их дегидратации. Так, в [4] показано, что при обезвоживании $K_5P_3O_{10}\cdot 4H_2O$ даже в вакууме, где предотвращена деградация трифосфата гидролизующим действием выделяющихся паров воды, отмечено образование кислых ди- и ортофосфатов. Такой механизм дегидратации может быть объяснен с точки зрения полученных нами спектроскопических данных о неэквивалентных энергетических состояниях молекул воды, а также об образовании ими прочных водородных связей. Появление кислых орто- и дифосфатов в процессе нагревания гидратированных трифосфатов калия может быть обусловлено диссоциацией молекулярной воды и переносом протона к аниону по линии H-связи.

Рис. 2. Кривые ДТБ K₅P₃O₁₀·4H₂O (1), β-K₅P₃O₁₀·2H₂O (2) и кривая ТГ β-K₅P₃· ·O₁₀·2H₂O⁻(3)

Как отмечено в [4], удаление посколичеств ледних регистрируемых воды заканчивается кристаллизацией безводного трифосфата калия. Известны две модификации безводного К₅Р₃О₁₀ – низкотемпературная (β) и высокотемпературная (α), свойства которых мало изучены [5]. Согласно [5] переход полиморфных модификаций β-K₅P₃O₁₀→α-K₅P₃O₁₀, определенный дилатометрически, наблюдается при 452° С и сопровождается слабым термоэффектом. Однако на ДТА полученных нами кривых β-K₅P₃O₁₀, а также гидратированных солей не был обнаружен термоэффект при этой температуре, а в некоторых случаях продуктом нагревания трифосфата калия до темпера-

тур выше 500° С был β -K₅P₃O₁₀. α -K₅P₃O₁₀ нами был получен при медленном обезвоживании ($v=2,5^{\circ}$ /мин) гидратированного трифосфата калия и последующем нагревании образца до температуры 700° С. Иногда в процессе нагревания получали смесь обеих безводных модификаций. β -K₅P₃O₁₀ и α -K₅P₃O₁₀ идентифицировали рентгенографическим и ИК спектроскопическим методами. На рис. З приведены рентгенограммы безводных трифосфатов калия, значения межплоскостных расстояний и относительные интенсивности дифракционных линий представлены в табл. 2. Колебательные спектры β - и α -K₅P₃O₁₀ приведены на рис. 4, отнесение частот представлено в табл. 1.

При самой низкой симметрии C₁ аниона P₃O₁₀⁵⁻ в области частот его валентных колебаний могут проявляться 12 полос поглощения (без учета возможности фактор-группового расщепления): одна v_{as} (PO₂), четыре

Рис. 4

 $v_{as}(PO_s)$, одна $v_s(PO_2)$, две $v_s(PO_s)$, две $v_{as}(POP)$, две $v_s(POP)$. Наиболее высокочастотные полосы в ИК спектрах 1236 (β -K₅P₃O₁₀) и 1216 (α -K₅P₃O₁₀) см⁻¹ мы относим к антисимметричным валентным колебаниям срединных PO₂-группировок. Колебаниям $v_{as}(PO_3)$ в β -K₅P₃O₁₀ соответствуют четыре полосы 1170, 1156, 1142, 1122 см⁻¹, в α -K₅P₃O₁₀ – две полосы 1145, 1130 см⁻¹. В спектрах КР колебаниям $v_{as}(PO_3)$ отвечают малоинтенсивные линии с близкими значениями частот. Очень интенсивные линии КР 1097 (β -K₅P₃O₁₀) и 1093 (α -K₅P₃O₁₀) см⁻¹ характеризуют симметричные валентные колебания срединных группировок $v_s(PO_2)$, поэтому полосы в ИК спектрах 1098 (β -) и 1093 (α -) см⁻¹ отнесли к $v_s(PO_2)$. Полосы $v_s(PO_3)$ в ИК спектрах обычно имеют небольшую интенсивность, к ним мы отнесли максимумы поглощения с частотами 1016, 997 см⁻¹ (β -) и 1013, 996 см⁻¹ (α -). Антисимметричным и симметричным колебаниям мостиковых групнировок соответствуют по две полосы в ИК спектрах: для β -K₅P₃O₁₀ 954, 872 см⁻¹ (ν_{as} (POP)); 715, 664 см⁻¹ (ν_{s} (POP)) и для α -K₅P₃O₁₀ 945, 878 см⁻¹ (ν_{as} (POP)); 734, 689 см⁻¹ (ν_{s} (POP)).

В области частот валентных колебаний аниона низкотемпературный β -K₅P₃O₁₀ близок по количеству и формам полос со спектрами K₅P₃O₁₀·4H₂O и β -K₅P₃O₁₀·2H₂O (рис. 1), что может служить доказательством однотилной конфигурации анионов P₃O₁₀⁵⁻ в этих соединениях.

Таким образом, при исследовании колебательных спектров тетра- и дигидрата трифосфата калия установлено, что в структуре этих гидратов имеется несколько типов кристаллографически неэквивалентных молекул воды, образующих достаточно прочные водородные связи. Это позволяет объяснить сложный характер дегидратации соединений. Получены и впервые идентифицированы методами рентгенофазового анализа, колебательной спектроскопии β - и α -модификации безводного трифосфата калия. Выполнено отнесение полос в колебательных спектрах трифосфатов калия. Отмечено, что спектры обоих гидратов и безводного β -K₅P₃O₁₀ близки в области частот колебаний анионов, тогда как спектр α -K₅P₃O₁₀ слизки в области частот колебаний анионов, тогда как спектр ИК спектроскопии для надежной идентификации безводных трифосфатов калия.

Литература

- 1. Булавкина Н. В., Сотникова-Южик В. А., Продан Е. А. // Весці АН ЕССР. Сер. хім. навук. 1983. № 4. С. 52.
- 2. Bellamy L. J., Owen A. J. // Spectrochim. acta. 1969. V. 25A. № 2. P. 329.
- 3. Макатун В. Н. Химия неорганических гидратов. Минск: Наука и техника, 1985. 246 с.
- 4. Сотникова-Южик В. А., Продан Е. А., Павлюченко М. М. // Журн. неорган. химии. 1976. Т. 21. № 1. С. 41.
- 5. Znamierowska T. // Polish J. Chem. 1978. V. 52. № 10. P. 1889.

Белорусский технологический институт им. С. М. Кирова Поступила в редакцию 20.Х.1987