- 2. Оптимальное время смешивания наполнителя со связующим в шнековом смесителе 4 мин, в бегунах— 25 мин при одинаковом объеме обрабатываемого материала.
- 3. При выборе типа смесителей и механической обработки наполнителя необходимо исходить из требуемых свойств КДП и фракционного состава наполнителя. При приготовлении прессмассы из наполнителя фракции 3/2 и 5/3 мм для получения пластиков с однородной структурой и повышенными физико-механическими свойствами целесообразно применять бегуны. Для получения этих свойств при смешивании в шнековом смесителе необходима предварительная механическая обработка наполнителя. Свойства КДП с наполнителем фракции 1/0 на применяемом оборудовании не зависят от типа смесителей.

А.Н. Минин, Е.А. Бучнева

ИЗМЕНЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ КОМПОЗИЦИОННОГО ДРЕВЕСНОГО ПЛАСТИКА В ЗАВИСИМОСТИ ОТ ПРИМЕНЯЕМОГО СВЯЗУЮЩЕГО И РЕЖИМОВ ПРЕССОВАНИЯ

Одним из важных направлений в переработке древесных отходов являются различные методы пластификации их с получением новых конструкционных материалов, разработка новых видов древесных пластиков с применением различных связующих.

В данной работе представлены результаты исследований, задача которых заключалась в установлении рациональных режимов изготовления композиционного древесного пластика, когда

Таблица 1

Марка смолы	Содер- жание сухих ве- ществ,	Содер- жание сво- бодно- го фе- нола,	Содер- жание сво- бодно- го фор- маль- дегида,	кость	Вяз- кость при 20 С по ВЗ-4	Hq	Оптовая цена за 1 т., руб.
СБС-1 ЦНИИФ-В С-1 M19-62	52 41 45 60	14 0,18 2,5	0,18	40 - 150 -	55 60 - 70	- - 7,8	460 200 200 225

наполнителем является смесь опилок хвойных и лиственных пород, а связующим - смолы СБС-1, М19-62, ЦНИИФ-В и С-1.

Выбор смол ЦНИИФ-В, С-1 и М19-62 обусловлен небольшим содержанием в них свободных фенола и формальдегида, а также их низкой стоимостью (табл. 1). Для сравнения показателей физико-механических свойств при аналогичных режимах были получены пластики на смоле СБС-1. Она обеспечивает получение прочных и водостойких изделий, но содержит 14 — 16% свободного фенола.

Подготовка наполнителя заключалась в отборе фракции 2/0мм, сушке его до влажности $8\,\%$ и приготовлении смеси сосновых и березовых опилок в соотношении 1:1 по весу.

Применяемое для пропитки наполнителя связующее доводили до концентрации 35% путем разведения товарных смол ЦНИИФ-В, М19-62 водой, а СБС-1 — этиловым спиртом.

Содержание смолы в прессматериале для всех опытов было принято равным $30\,\%_{ullet}$

В 35%-ный раствор фенол-формальдегидных смол (для ускорения процесса поликонденсации смолы при прессовании) вводился гексаметилентетрамин в количестве 3% к весу сухой смолы. В смолу М19-62 инициирующие добавки не вводились.

Подготовленные к пролитке наполнитель и связующее механически перемешивались в шнековом смесителе в течение 25 - 30 мин. Пропитанный прессматериал высушивался до влажности 5 - 6%. Из сухого прессматериала отбирались навески для определения его влажности и летучих, затем он упаковывался в полиэтиленовые мешки, где хранился до прессования.

Дозировка прессматериала на образцы производилась весовым методом из расчета получения стандартного бруска мерами $120 \times 15 \times 10$ мм и плотностью $1.3 \, \text{г/см}$.

Подготовленная навеска прессматериала брикетировалась на холодном прессе.

Прессование образцов осуществлялось на гидравлическом прессе П-474 в шестиместной прессформе при режимах, указанных в табл. 2. По истечении выдержки плавно снижалось давление и размыкалась прессформа. Образцы вынимались из прессформы без охлаждения и затем кондиционировались в условиях лаборатории в течение 5 суток.

Определение показателей физико-механических свойств пластиков проводилось по методикам, изложенным в ГОСТ на испытания пластических масс органического происхождения. На каждый вид испытаний отбиралось 12 образцов.

И	Сходный ма	териал	Режим	пресс	вания	Пока	азатели	физико-м	еханичес	ских сво	ойств пл	астикс	В
на	полнитель	марка смолы	TeM- nepa- Tyba nhut npec- ca. C	дав- ле- ние, кгс/ см ²	ВЫ- Дер- ЖКА (МИН/ ТОЛ- ШИ- НЫ ГОТО- ВОГО ПЛАС- ТИКА	плот- ность, г/см ³	влаж- ность, %	предел г ти г Стати- ческом изгибе, кгс/2 см	прочнос- при Сжатии 1 плос- кости прессо- вания, кгс/ 2 см	удар- ная вяз- кость, кгс- см/ см ²	число твер- дости, кгс/ мм ²	водоп щени 24 часа	огло- е,% за 30 суток
_	1	2	3	4	5	6	7	- 8	9	10	11	12	13
or or	ерезовые сосновые илки в ротношении : 1	CBC-1	120 140 160 180 200 120 140 160 180 200	400 " " 400 " " " " " " " " " " " " " "	1 " " " 0,5	1,31 1,30 1,27 1,23 1,30 1,30 1,30 1,24 1,13	2,2 1,8 2,0 2,5 p a 1,9 2,1 2,7 3,2 p a	724 759 77 4, 7 573 , 0	1485,5 1310,5 2218,5 1814,5 илис 1787 1982,6 1976,5 1923,0 илис	5,44 4,64 5,36 4,99	19,87 21,2 24,0 18,2 21,2 20,1 23,55 20,09	2,48 2,27 0,92 1,25 1,02 1,34 1,40 2,59	18,88 17,95 7,17 8,40 7,85 9,61 7,87 13,21
OU.	ерезовые сосновые илки в отношении 1	11 11 11	140 160 180 200	400	0,25	1,29 1,24 1,18 1,18	1,4 2,1 2,5 2,5	623,3 706,0 593,5 576,3	1896,0 1967,0 1931,0 1536,5	5,24 6,49 5,57 5,22	19,87 20,51 14,45 13,53	1,86 0,79 1,09 2,88	12,69 6,5 8,49 14,41

1	2	3	4	5	6	7	8	9 -	10	11	12	13
Березовые	ЦНИИФ-В	120	400	1,0	1,25	6,0	274,0	778	2,91	14,13	9,86	27,27
и сосновые	"	140	"	"	1,20	5,9	325,6	1145,5	3,41	15,21	9,6	24,08
	"	160	. "	"	1,26	4,9	413,5	1211	5,54	16,73	9,08	23,2
опилки в	- "	180	"	"	1,22	5,3	356,6	1255	4,76	16,16	8,88	20,8
соотношении 1:1	"	200	"	"	-	•	рас	с л о и	пис	Ь		
" "	цнииф-В	120	400	0,5	1,15	5,8	118,0	917	3,52	13,25	30,16	развали- лись
	,,	140	"	"	1,20	5,7	269,1	1004	4,73	13,53	6,96	24,91
	,,	160	"	"	1,21	5,4	389,2	1041	4,70	17,23	6,37	16,12
	<i>"</i>	180	"	"	1,24	4.9	392,6	1228	4,65	17,66	12,26	26,24
	"	200	"	"	- 1		рас	с л о и	лис	đ		
,, ,,	цнииф-В	120	400	0,25	1,03	5,4	95,7	589,6	4,49	10,42	33,72	51,0
	″	140	"	"	1,03	5,2	158,5	726	4,44	12,47	16,37	32,4
	"	160	"	"	1,21	5,1	331,6	977	4,79	15,51	11,45	25,08
	"	180	"	"	1,23	5,1	371,8	1008	4,80	15,9	12,7	26,17
	"	190	"	"	1,25	4.7	380,8	896,5	4,41	17,18	9,12	22,3
	"	200	"	"		·		слои	лис	ь		
,, ,,	M 19-62	120	400	1	1,25	5,3	516	1025,3	4,49	15,51	5,0	20,9
	"	140	"	"	1,21	5,1	506,3	1055	4,92	15,5	6,94	22,8
	"	160	"	"			рас	слои	лис	ь		
	,,	120	400	0,5	1,21	6,3	427	739	3,90	14,3	9,47	36,5
	"	140	"	"	1,22	5,3	440	1030,5	5,29	15,9	8,95	27,18
	"	160	"	"	1,22	5,1	448,5	791,5	4,82	11,15	7,22	27,48
	"	180	,,	"	-,	•		ссло	илис	ь		

Продолжение

1	2	က	4	ಬ	9	7	∞	6	10	11	12	13
Березовые	M19-62	120	400	0,25	1,20	6,0	345,5		4,37	15,5	24,11	50,5
и сосновые	*	140		*	1,24	5,3	385,6		1025 5,19	16,17	8,98	25,92
опилки в	*	160	•		1,20	4,4	500,5		5 4,52	16,3	25,32	42,29
соотношении 1:1		180	b	*			рас	O	ипиоп			
*	5	140	400	_	1,29	2,8	629	974		18,17	1,54	12,59
	,,	160		,,	1,30	2,6	700,5	1206,5	5,66	15,9	1,18	8000
	*	180		*	1,25	3,2	535,0	1194,5		90.6	1,52	2,53
	4	200					рас	_	ипи	0	è	
	*	140	400	0,5	1,27	2.8	609	1042	4,86	14,79	1,68	7,25
		160	"	"	1,24	2,9	713	1058	5,73	13,82	1,58	7,31
		180	*	*	1,27	3,2	467	1163	4,39	9,49	5,97	11,25
	2	200		h			20	5	и	_		

Достоверность исследований проверялась методом математической статистики, показатель точности не превышал 5%.Среднеарифметические показатели физико-механических свойств представлены в табл. 2.

Сравнивая показатели физико-механических свойств пластиков на основе смолы СБС-1 можно видеть, что прочность и водостойкость пластиков возрастают с увеличением температуры прессования от 120 до 160 С при всех изучаемых выдержках времени прессования. При температуре прессования 180 С протекает процесс деструкции прессматериала, вызывающий снижение всех физико-механических показателей пластиков. Данный процесс прогрессирует с увеличением температуры до 200 С. Снижение времени выдержки до 0,25 мин/мм толшины готового пластика не может остановить его процесс деструкнии.

Полученные закономерности показывают, что, используя в качестве наполнителя смесь березовых и сосновых опилок, на основе смолы СБС-1 можно получить прочные и водостойкие изделия при температуре 160°С, давлении 400 кгс/см и времени выдержки 0,25 мин/мм толщины готового изделия. По своим физико-механическим показателям данные пластики незначительно отличаются от пластиков, полученных при времени выдержки 1 мин/мм, а ударная вязкость и водостойкость их выше. Применение данного режима при изготовлении изделий на основе смолы СБС-1 позволяет увеличить производительность основного технологического оборудования.

При изготовлении композиционного древесного пластика на основе смолы ЦНИИФ-В с увеличением температуры прессования от 120 до 160° С при времени выдержки 1 мин/мм прочность и водостойкость пластиков растет.

При температуре 180 С наблюдается снижение физико-механических показателей пластиков, вызванное деструкцией прессматериала. Уменьшая время прессования до 0,5 и 0,25 мин/мм толщины готового пластика, можно предотвратить данный процесс и получать сравнительно прочные и водостойкие изделия.

Наиболее прочный и водостойкий пластик на основе смолы ЦНИИФ-В получен при температуре 160° С, давлении $400\,\mathrm{krc/cm}^2$ и времени выдержки $1\,\mathrm{мин/мм}$ толщины готового пластика.

Применение в качестве связующего смолы M19-62 по сравнению с ЦНИИФ-В позволяет получать более прочные изделия при статическом изгибе, Самые прочные и водостойкие изделия на данной смоле получены при температуре прессования 140° C, давлении $400 \, \mathrm{krc/cm}^2$ и времени выдержки $1 \, \mathrm{мин/мм}$ тол-

щины готового пластика. Увеличение температуры прессования до 160°C при данной выдержке вызывает расслоение пластиков. Снижение времени выдержки до 0,5 и 0,25 мин/мм замедляет процесс деструкции прессматериала. Расслоения пластиков не происходит, но физико-механические показатели их снижаются.

Оптимальной температурой прессования композиционных древесных пластиков на основе смолы С-1 является 160° С.Умень— шение или увеличение данной температуры приводит к снижению физико-механических показателей пластиков. По ряду свойств (прочность при статическом изгибе, ударная вязкость, водопоглощение) полученные изделия приближаются к изделиям на основе смолы СБС-1.

На основании проведенных исследований можно сделать следующие выводы.

- 1. Из рассматриваемых водорастворимых смол наибольшую прочность и водостойкость изделий обеспечивает смола С-1. По показателям предела прочности при статическом изгибе, ударной вязкости, водопоглощения данные пластики приближаются к пластикам, изготовленным на смоле СБС-1. При этом немаловажными факторами являются более низкая стоимость смолы С-1 и значительно меньшее содержание в ней свободного фенола.
- 2. Пластики на основе смолы ЦНИИФ-В, полученные при оптимальных режимах их изготовления, обладают той же ударной вязкостью, что и пластики на основе смолы СБС-1. Остальные показатели физико-механических свойств их ниже.
- 3. Применение смолы M19-62 по сравнению со смолой ЦНИИФ-В позволяет получать более прочные изделия при ста-

Таблица 3

Технологические	Марка смолы							
факторы	CBC-1	C-1	ЦНИИФ-В	M 19-62				
Температура прессова-	100	100	100					
ния, С	160	160	160	140				
Давление, кгс/см2	400	400	400	400				
Выдержка (мин/мм) толшины готового пластика	0,25	1	1	1				

тическом изгибе. Большим преимуществом использования мочевино-формальдегидных смол в производстве композиционных древесных пластиков является возможность достижения окраски изделий в светлые тона.

- 4. Время выдержки при прессовании изделий, в которых наполнителем служит смесь березовых и сосновых опилок в соотношении 1:1, а связующим— смола СБС-1, можно сократить до 0,25 мин/мм толщины готового изделия.
- 5. При изготовлении изделий на основе смеси березовых и сосновых опилок и смол СБС-1, С-1, ЦНИИФ-В и М19-62 рекомендуются режимы прессования, представленные в табл. 3.

М.М. Ревяко, Л.А. Кажекина, В.В. Табанькова

ИССЛЕДОВАНИЕ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК АРМИРОВАННЫХ КОМПОЗИЦИОННЫХ ДРЕВЕСНЫХ ПЛАСТИКОВ НА ОСНОВЕ ПОЛИЭТИЛЕНА

Среди конструкционных пластиков наибольшее имеют те, которые обладают определенной жесткостью и прочностью связи между элементами. В процессе эксплуатаций apмированных пластиков внешние поверхностные нагрузки могут быть приложены только к части армирующих элементов, вся остальная их масса вовлекается в процесс деформации через посредство связующего. В силу этого ясно [1], что при использовании в элементах силовых конструкций наиболее целесообразными будут те материалы, в которых независимо хэрактера локального приложения внешних нагрузок вается наиболее однородная деформация всей гетерогенной системы в целом.

В качестве армирующего вещества наиболее часто используют стеклянные волокна. Материал, армированный стеклянными волокнами, приобретает ряд новых качеств, характеризуемых малым удельным весом, высокой механической прочностью, хорошей демпфирующей способностью, коррозмочной и эрозионной стойкостью [2, 3].

В настоящей статье изложены прочностные характеристики армированного бесщелочным алюмоборосиликатным стекловолокном древесного пластика на основе полиэтилена высокой плотности, сшитого перекисью дикумила. В качестве наполни-