римой фенолформальдегидной смолы, протекают процессы деструкции и структурирования ее молекул.

В первые 9 и 6 месяцев (за исключением 3 месяца) соответственно для пресс-масс на основе спирторастворимой и водорастворимой смолы наблюдается превалирующее действие процессов структурирования. С увеличением срока хранения пресс-массы до 12 и 24 месяцев прогрессируют процессы деструкции. После 24 месяцев хранения пресс-массы даже создание более жестких режимов ее переработки не позволяет получить качественные изделия.

Следовательно, в зависимости от назначения изделий может быть выбран различный срок хранения пресс-массы. Однако, он должен быть не более 9 месяцев для пресс-масс на основе спирторастворимой смолы и не более 6 месяцев для пресс-масс на основе водорастворимой смолы.

Переработку пресс-масс со сроком хранения 3 месяца с целью получения изделий, соответствующих требованиям ГОСТ 11368-69, производить при давлении 500 кгс/см.

Литература

1. Минин А.Н., Бучнева Е.А. Изменение физико-механических свойств композиционного древесного пластика в зависимости от применяемого связующего и режимов прессования. — В сб.: Механическая технология древесины, вып.5. Минск, 1975. 2. Ершов Ю.А., Кузин С.И. Механизм светового старения и светостабилизации полимеров. — Сб.: Успехи химии, 1969, т. XXXVIII, вып. 2. 3. Гойхман Б.Д. и др. К вопросу об оценке сроков хранения полимерных материалов по тепловому старению. — "Каучук и резина", 1968, № 4.

М.М. Ревяко, Л.А. Кажекина, В.В. Яценко АРМИРОВАННЫЕ КОМПОЗИЦИОННЫЕ ДРЕВЕСНЫЕ ПЛАСТИКИ НА ОСНОВЕ ПОЛИЭТИЛЕНА

Настоящая работа проведена с целью изучения возможности армирования композиционных пластиков на основе сшитого полиэтилена высокого давления.

Сшивку полиэтилена производили с помощью перекиси ди-кумила. Перекись дикумила одновременно обеспечивает полно-

Таблица 1. Плотность армированных КДП (г/см3)

Содержание волокна, вес. %	Содержание наполнителя, вес. %						
	30	45	60	75	90		
0	0,863	0,921	0,937	0,955	0,962		
10	0,861	0,910	0,928	0,947	0,959		
20	0,844	0,900	0,919	0,931	0,947		
30	0,816	0,873	0,875	0,888	0,904		

ту протекания и большую скорость реакции по свободно радикальному механизму, так как ее период полураспада при 170 С равен 1 мин и энергия активации составляет примерно 32 ккал/моль [1]. Сшивающий агент вводился в количестве 5% от веса связующего. В качестве наполнителя применялись березовые опилки фракции 2,0 мм, высушенные до влажности 5—7%, в количестве 30%, 45, 60, 75, 90% весу полиэтилена.

Армирование производили ориентированным древесным волокном. Порода древесины — береза, ширина частиц — 0,8 мм (размер в тангенциальном направлении). Армирующая добавка вводилась в количестве 10%, 20, 30% от количества наполнителя.

Стандартные образцы получали методом компрессионного прессования при температуре 170°С, давлении 280 кгс/см².

Исследование свойств полученного материала проводили согласно стандартным методикам.

В условиях прессования наполнитель уплотняется, а связующее переходит в сшитое состояние. Кроме того, повышенное давление способствует сжиманию аморфной фазы полимерной составляющей, в результате чего плотность увеличивается. С увеличением степени наполнения от 30 до 90% для композиций без армирующей добавки плотность увеличивается от 0,863 г/см до 0,962 г/см (табл. 1). Введенное волокно как бы разрыхляет всю структуру системы и в то же время приводит к увеличению объема и, следовательно, к уменьшению плотности пластика. Так, при 75%—ном наполнении введение 30% волокна снижает плотность пластика с 0,955 г/см до 0,888 г/см 3.

С введением в полиэтилен наполнителя и армирующей добавки увеличивается жесткость системы, в результате чего происходит увеличение модуля упругости при растяжении $E_{\rm D}$

Таблица 2

Свойства	Содержа- ние напол- нителя,	Содержание волокна, вес. %				
	нителя, вес. %	0	10	20	30	
E • 10 ³ кгс/см ²	30	1,24	1,35	1,50	1,65	
	2 45	1,70	1,80	2,20	2,35	
	60	2,30	2,50	2,70	3,07	
	70	2,85	4,85	2,95	3,50	
	90	3,15	3,25	3,60	4,00	
HRB, krc/mm ²	30	2,40	2,50	2,90	3,10	
	2 45	2,67	3,20	3,55	3,93	
	60	3,10	4,10	4,60	4,70	
	90	4,00	4,60	4,70	4,90	
ТР, мм	30	230	220	210	190	
	45	208	190	180	160	
	60	1 85	175	150	135	
	75	175	150	125	80	
	90	63	50	45	40	
т ^о , С	45	64	65	66	67	
	60	66	70	73	75	
	75	75	83	84	87	
	90	74	80	80	81	

и твердости HRB. На границе раздела фаз полиэтилен древесина за счет химического взаимодействия и сил Ван-дерпонижается гибкость полимерных цепей, приобретает жесткость, которая увеличивается еще и за образования сшитой структуры полиэтилена под действием перекиси. Кроме того, древесина препятствует возникновению микротрещин в полимере, что в конечном счете ведет к увеличению прочности композиции. Так, например, композиция, содержащая 30% наполнителя, имеет модуль упругости 1,24.10 кгс/см, а композиция, содержащая 60% наполнителя и волокна, -- 3,07.10 кгс/см (табл.2). Введение 30% в композицию, содержащую 45% наполнителя, обеспечивает увеличение твердости от 2,67 кгс/см до 3,93 кгс/см (табл.2).

Теплостойкость по Мартенсу (Т) определяется величиной деформации. Общая деформация образца есть сумма деформаций элементарных участков. Чем больше будет элементарных

участков с неизменной деформацией (участков измельченной древесины), тем меньше будет величина общей деформации, тем выше должна быть температура, при которой достигается установленная при испытании величина деформации[2]. Таким образом, теплостойкость пластика будет увеличиваться с увеличением степени наполнения и введения армирующей добавки. Это подтверждается результатами испытаний (табл.2). Так, с увеличением содержания наполнителя от 45 до 75% теплостойкость увеличивается от 64 до 74°С. Введение 20%-ного армирующего агента при 60%-ном наполнении обеспечивает увеличение теплостойкости от 66 до 73°С.

Увеличение наполнителя с 75 до 90% приводит к снижению теплостойкости. Это объясняется тем, что связующего недостаточно и в системе образуются контакты типа наполнитель — наполнитель, в результате чего теплостойкость папает.

В процессе исследований определялась текучесть ла, т.е. его способность растекаться в форме, характеризуюдая возможность применения материала для получения изделий различной конфигурации. В табл. 2 представлена текучести (ТР) композиционных древесных пластиков держания наполнителя и армирующей добавки. Из табл. 2 видно, что большую текучесть имеют композиции, меньшее количество наполнителя, что обусловливается честью самого полиэтилена. С увеличением количества наполнителя происходит увеличение сил трения на границе тилен -- древесный наполнитель и пресс-материал -полость пресс-формы, а следовательно, текучесть падает. Так, композиций, не содержащих армирующей добавки. увеличение содержания наполнителя от 30 до 90% приводит к снижению текучести от 230 до 63 мм. Введение армирующей добавки также снижает текучесть материала. При содержании полнителя введение 30% волокна вызывает снижение текучести от 230 до 190 мм. Уменьшение текучести объясняется тем. что волокно увеличивает вязкость системы полиэтилен наполнитель.

Полученные данные позволяют сделать вывод о возможности получения изделий из армированного древесным волокном композиционного пластика методом прессования. Повышенные физико-механические свойства представляют возможным применение изделий в различных областях машиностроения.

Литература

1. Киртовская Г.И. Структурирование модифицированного полиэтилена перекисью дикумила. Автореф. канд. дис. Рига, 1970. 2. Сагалаев Г.В. Модель наполненной системы. Свойства модельной системы. — В сб.: Наполнители полимерных материалов. М., 1969.

Т.Л. Ширина

ВЛИЯНИЕ РАЗЛИЧНЫХ СВЯЗУЮЩИХ НА СВОЙСТВА КОМПОЗИЦИОННЫХ ДРЕВЕСНЫХ ПЛАСТИКОВ

В лаборатории древесных пластиков Белорусского технологического института им. С.М.Кирова была проведена работа
по изучению возможности использования новых смол, содержащих небольшой процент летучих продуктов, в производстве
КДП.

В частности, применены феноло-формальдегидные (ЛВС-9, УБФ и ЛАФ) и мочевино-формальдегидные (КВС и СК-75) смолы, синтезированные в ЦНИИФе и на Кемеровском заводе "Карболит". В этой работе проведены исследования, которые позволили выявить среди взятых связующих наиболее перспективные и технологичные в производстве композиционных древесных пластиков.

Диапазон исследований был выбран на основании имеющихся опытных данных по композиционным древесным пластикам и с учетом свойств взятых связующих, оптимальная температура отверждения которых находится в пределах 140—160°С. Давление прессования принималось из расчета получения пластиков плотностью 1,35 г/см в пересчете на абсолютно сухое состояние.

В качестве наполнителя использовались березовые опилки от лесопильной рамы фракции 2/0 мм, 6--8% влажности.

Прессование образцов пластиков проводилось в шестиместной пресс-форме на гидравлическом прессе ПВ-474. Образцы испытывались по методике, рекомендуемой для пластмасс органического происхождения. В табл. 1 показано изменение физико-механических свойств пластиков в зависимости от содержания связующего в пресс-материале, температуры прессования и времени выдержки под давлением.