Термическая и термоокислительная деструкция

полиимидных волокон

Исследование термостабильности полиимидов является важным направлением, позволяющим изыскивать новые пути синтеза и модифицирования процессов получения этих термостойких полимеров и изделий на их основе.

В статье приводятся результаты исследования термостабильности ориентированных волокон на основе полипиромеллитимидов (ППИ), различающихся химическим строением диаминного фрагмента, в условиях термической и термоокислительной деструкции. ППИ волокна были приготовлены из полипиромеллитимидов общей формулы

Указанными индексами волокна обозначены в зависимости от названия диамина: *п*-фенилендиамин (ПФ), *м*-фенилендиамин (МФ), бензидин (Б), диаминотерфенил (ТФ), диаминнодифенилметан (ДФМ), диаминобензофенон (БФ), диаминорезорцин (Р), диаминотетра (*п*-фениленоксид) (ПМ-4).

ППИ волокна получали в сопоставимых условиях на установке, описанной в работе [1], из расТ. СЕКЕЙ*, М. М. КОТОН, Ю. Н. САЗАНОВ, Н. Р. ПРОКОПЧУК, Л. Н. КОРЖАВИН

творов соответствующих полиамидокислот в диметилформамиде. Сформованные волокна после сушки имидизовали нагреванием в инертной среде при 370° С в течение 10 мин.

Термический анализ ППИ волокон в среде воздуха и гелия проводили на термоанализаторе «Дюпон ТГА-951» при скорости газового потока 50 мл/мин и скорости нагревания образца 5°С/мин; масса навески 2—3 г. Одновременный термогравиметрический и масс-спектрометрический аналяз (ТГА—МТА) ППИ волокон в вакууме (10⁻⁵ мм рт. ст.) проводили на термовесах фирмы «Меттлер» (Швейцария), соединенных с квадрупольным масс-спектрометром фирмы «Балзер» (Швейцария) при скорости нагревания 5°С/мин; масса навески 1—1,5 мг, диапазон масс-спектров 1—100, разрешающая способность $m/\Delta m = 100$.

При сравнении термостабильности исследованных образцов ППИ волокон использовали такие температурные характеристики, найденные по кривым ТГА и динамическим разверткам масс-спектров (при анализе в вакууме), как температура начала потери массы (t_0) или начала газовыделения (t'_0) , температура 5-, 10- и 100%-ной потери массы (t_5, t_{10}, t_{100}) . Кроме этого, определяли долю карбонизованного остатка (P, %) при 850° С после пиролиза полимеров в вакууме и значения энергии активации термодеструкции (E, Дж/моль).

В результате сравнения указанных параметров можно сделать некоторые заключения о влиянии химического строения ориентированных ППИ на их термостабильность. Обращают внимание большие значения t_0 для ППИ волокон, синтезированных на основе диаминов терфенила, резорцина и бензидина (таблица), которые стабильны на воздухе и в среде гелия при температурах выше 400° С. В то же время термостабильность волокон,

* Исследовательская лаборатория неорганической химии Академии наук Венгерской Народной Республики.

Гемпературные хар	актеристики	ППИ	волокон
-------------------	-------------	-----	---------

Set all a	<i>t</i> ₀ , °C			t₅, °C			t ₁₀ , °C			t ₁₀₀ , ⁶ C		Е, КДж/моль				135
Индекс волокна	в	ſ	вк	В	Г	вқ	в	Г	вк	В	Г	в	Г	вк	⁺ <mark>0</mark> , °C	P, %
ПФ МФ Б ТФ ДФМ БФ Р ПМ-4	350 360 435 425 405 385 445 370	385 390 405 390 405 360 435 380	320 380 340 320 400 400	460 435 510 510 460 455 500 445	490 460 490 515 495 460 495 445	440 505 440 440 450 440	495 465 520 525 495 495 515 465	520 480 515 540 530 510 525 470	470 520 460 460 460 465	555 570 570 600 570 570 560 550 550 540	690 660 595 660 790 580 670 636	$\begin{array}{c} 255,4\\152,4\\402,0\\272,2\\237,8\\154,9\\322,8\\192,3\end{array}$	$167,5 \\ 152,4 \\ 230,3 \\ 182,1 \\ 131,0 \\ 81,2 \\ 173,8 \\ 126,4$	154,1 301,5 146,5 167,5 259,6 177,1	280 350 260 290 390 330	56,0 64,0 66,8 65,4 53,3 54,0

Обозначения: в-воздух, г-гелий; вк-вакуум.

4. Химические волокна № 1

полученных на основе *п*-фенилендиамина, заметно ниже даже по сравнению с волокном ДФМ, содержащим метиленовую группу в диаминном компоненте. Необходимо заметить, что to часто зависит от методики приготовления образцов и не всегда в точности отражает влияние химической структуры полимера на термостабильность изделий из него. Более четкие зависимости термостабильности волокон от их химического строения можно получить при сравнении значений t₅ и t₁₀, так как эти температурные характеристики, относящиеся к началу термодеструкции основной структуры полимера, а. не низкотемпературных примесей в изделиях, позволяют более объективно оценить вклад химического строения полимера в термостабильность ППИ волокон. *

Расчеты, проведенные на основании данных таблицы, позволили получить следующие ряды термостабильности, по существу, не зависящие от окружающей образец газовой среды: по t₀ — P> >Б>_ТФ>ДФМ>ПМ-4>БФ≥МФ>ПФ; по t₅— - T $\Phi > E > P > Д \Phi M > \Pi \Phi > E \Phi > M \Phi >$ >ПМ-4; по *E*—Б>Р>ТФ>ПФ>ДФМ>ПМ-4 >БФ>МФ. Эти ряды подтверждают высокую термостабильность волокон Б, Р и ТФ, заметно отличающуюся от термостабильности остальных ППИ волокон. Для этих же волокон отмечены наиболее высокие значения энергии активации термодеструкции на воздухе, в вакууме и в среде гелия, а также температуры начала газовыделения в вакууме. Повышенную термостабильность ППИ волокон на основе бензидина и диаминов резорцина и терфенила по сравнению с остальными волокнами можно объяснить удачным сочетанием высокой термостабильности п-фениленовых заместителей в диамине с достаточно хорошей надмолекулярной организацией волокон в целом [2].

Если рассматривать термостабильность волокон на основании температурных характеристик как результат взаимоналожения химических и физических факторов, то выявленную зависимость между химическим строением диамина и термостабильностью ППИ волокна не всегда можно связать с привыч-

* Характеристика термостабильности, принятая авторами, не коррелирует с общепринятой характеристикой термостабильности волокон по изменению механических показателей (прим. ped.).

26

Рис. 2. Кривые одновременного ТГА — МТА образца Б. Цифры у кривых МТА обозначают массовые числа продуктов пиролиза (в м/е).

ными представлениями о термостабильности отдельных звеньев или групп атомов, входящих в структуру ППИ. Кроме указанного выше волокна Р хорошую термостабильность, особенно в инертной среде, показывает волокно ДФМ, у которого в диаминном компоненте находится «слабая метиленовая связь». С другой стороны, волокно ПМ-4, содержащее три оксифениленовые группы в пара-положении, в диаминном компоненте менее термостабильно, чем волокна Р и ДФМ. Очевидно, для ППИ в форме волокон надмолекулярная структура играет в ряде случаев главенствующую роль при определении его термостабильности.

Температурные характеристики исследованных волокон зависят от газовой среды, в которой проводится термический анализ. Так, температура начала термоокислительной деструкции образцов, за исключением менее термостабильных (ПФ, МФ и ПМ-4), выше, чем в среде гелия и особенно в вакууме. Значения t_5 и t_{10} для большинства ППИ волокон почти одинаковы на воздухе и в среде гелия и, как правило, ниже в вакууме. Температура полного улетучивания образцов (t_{100}) заметно различается в среде воздуха и гелия, в особенности это видно на примере ППИ, имеющих «шарнирные» атомы и группы атомов в диаминном компоненте (волокна ДФМ, БФ, Р и ПМ-4).

Особенно заметен эффект газовой среды при расчете энергии активации термоокислительной деструкции ориентированных ППИ, для которых значения E существенно выше, чем в среде гелия и в вакууме. Влияние окислительной среды хорошо заметно на рис. 1, где приведены кривые ТГА образдов Б, ДФМ и БФ. Увеличение значений t_0 при термоокислительной деструкции свидетельствует о протекании процессов структурирования волокна под действием кислорода при повышенной температуре, однако дальнейшее повышение температуры приводит к резкому увеличению скорости деструкции по сравнению с деструкцией волокон в среде гелия. Интенсивный унос продуктов термодеструкции в вакууме снижает t_0 , однако в дальнейшем отсутствие окислительных процессов приводит к карбонизации волокна и образованию остатка, не деструктирующего при 800—850° С. Подобное замедление процесса термодеструкции наблюдается и в среде гелия, однако деструкция образца протекает до полного улетучивания в интервале температур 600—860° С. Очевидно, по сравнению с вакуумом фактором, определяющим ход процесса термодеструкции ППИ, является скорость удаления летучих продуктов пиролиза и различие в глубинных процессах карбонизации при высоких температурах в вакууме и в среде гелия.

Сравнение показателей t_0 и t'_0 показывает, что метод МТА позволяет зафиксировать при более низких температурах начало термодеструкции с одновременной идентификацией газообразных продуктов термического превращения ППИ, а сопоставление этих данных с кривой одновременного ТГА дает возможность более полно судить о процессах, протекающих в волокнах при повышенной температуре.

Кривые одновременного ТГА — МТА волокна Б показывают (рис. 2), что начало газовыделения, определяемого по спектрам с м/е 44 и 28 (СО2 и СО соответственно), становится заметным при температуре ниже температуры начала потери массы на 30°С. Интенсивное выделение СО₂ и СО совпадает с максимальной скоростью потери массы, отмечаемой по кривой ТГА при 510-520°С. О сложности процессов, протекающих в интервале температур 500—550°С, свидетельствует появление пика воды, цианистого водорода, бензола и увеличение количества выделяющегося водорода. С дальнейшим повышением температуры значительно снижается скорость потери массы и наблюдается выделение остатков СО и H₂ (кривая ТГА выходит на плато). Подобные зависимости получены при МТА остальных образцов ППИ волокон.

Приведенные в табляте значения энергии активации процессов термодеструкции исследованных волокон, рассчитанные по кривым ТГА [3], дают, как указывалось ранее [4], представление о суммарном эффекте разложения. Так как в ходе повышения температуры в ППИ происходит ряд процессов, то большинство значений *E* являются усредненными и рассчитанными по участку наиболее интенсивной деструкции. Поэтому сопоставление значений *E* различных образцов дает некоторую информацию в ограниченном интервале потерь массы и температур деструкции. Более точные значения *E* можно получить для процессов, протекающих в одну стадию; для многостадийных процессов в зависимости от специфики процесса иногда можно определять *E* отдельных стадий. В качестве примера можно привести расчет величины *E* для волокна БФ, среднее значение которой, равное для случая деструкции в вакууме 167,1 кДж/моль, определено по участку интенсивной скорости термодеструкции с погрешностью ±25 моль. По окончании интенсивного газовыделения значение *E* снижается до 50— 75 кДж/моль, что типично для процессов карбонизации волокон независимо от их строения.

Таким образом, более детальный анализ значений энергии активации, рассчитанных для различных участков кривой ТГА, в особенности там, где возможно с определенной степенью точности установить границы перехода одного процесса в другой при повышении температуры, дает возможность сравнивать термодеструкцию различных по химическому составу образцов полипиромеллитимидов.

Литература

- 1. Коржавин Л. Н. Канд. дисс. Л., ИВС АН СССР, 1971. 2. Баклагина Ю. Г. и др. Докл. АН СССР, 1975, т. 221,
- c. 609. 3. Horowitz H. H., Metzger G. Anal. Chem., 1963, v. 35,
- p. 1464. 4. Koton M. M., Sazanov Yu. N. J. Thermal Anal., 1975,
- v. 7, p. 165.

Поступила в редакцию 13/XI 1975 г.

УДК 547.298.12*211:543.062

Количественный анализ в производстве регенерированного диметилацетамида

Технологические процессы получения термостойких ароматических полиамидов включают в себя регенерацию диметилацетамида из отработанных растворов [1—3]. Регенерация диметилацетамида (ДМАА) на установке периодической ректификации была описана ранее [4]. В данном сообщении приведены сведения о методах количественного анализа отработанного раствора, поступающего на регенерацию, регенерированного ДМАА и сточных вод. Разработка этих методов необходима в целях управления технологическим процессом и для производственного контроля состава конечных продуктов.

В состав отработанного раствора входят следующие компоненты (в масс. %):

Вода .			75-95	HCI	 0,02-0,50
ДМЛА			5 -2 5	LiCl	 0,02-0,80

Сточные воды, направляемые в канализацию химически загрязненных стоков, должны содержать не более 0,04 масс.% ДМАА. Напротив, примесь воды в регенерированном ДМАА должна составлять не более 0,05 масс.%. В нем же возможна примесь уксусной кислоты (до 0,04%), образующейся как продукт побочной реакции гидролиза ДМАА в процессе регенерации. Очевидно, что содержание веществ в анализируемом сырье, Г. И. МИХАЛЮК, В. Е. БОГОСЛОВСКИЙ, Н. И. ЗОРИНА, И. Д. МЕРКУЛОВА

промежуточных и конечных продуктах и пределы изменения содержания компонентов таковы, что применение какого-то одного универсального метода анализа для всех случаев невозможно. Был разработан комплекс методов количественного анализа соответственно особенностям анализируемых смесей. Основными из них являются потенциометрическое титрование и газожидкостная хроматография с использованием пламенноионизационного детектора.

Для анализа состава исходного раствора, часть компонентов которого нелетуча, был выбран метод потенциометрического титрования.

Анализ исходного раствора

Определение содержания ДМАА. Для титрования используется потенциометр марки pH-340 со стеклянным индикаторным электродом