УДК 661.635

ФИЗИЧЕСКАЯ ХИМИЯ

л. н. щегров, в. в. нечковский, л. с. ещенко

ТЕРМИЧЕСКАЯ ДЕГИДРАТАЦИЯ Ni₃(PO₄)₂ · 8H₂O

(Представлено академиком В. И. Спицыным 10 VI 1968)

Исследованию процесса дегидратации $Ni_3(PO_4)_2 \cdot 8H_2O$ и состава образующихся при этом продуктов посвящено незначительное количество работ с противоречивыми данными (1-3). Так, автор (1, 2) утверждает, что при нагревании до 300° исходный $Ni_3(PO_4)_2 \cdot 8H_2O$ превращается в $NiHPO_4$ и NiO. Дальнейшее повышение температуры до 600° приводит к превращению $NiHPO_4$ в $Ni_2P_2O_7$ с образованием при 1000° следов $\{Ni(PO_3)_2\}_3$.

Рис. 1. Термический анализ $Ni_2(PO_4)_2 \cdot 8H_2O$ и $Ni(OH)_2 \cdot 1,2H_2O$. Термограммы $Ni_3(PO_4)_2 \cdot 8H_2O$ (A) и $Ni(OH)_2 \cdot 1,2H_2O$ (B); $\not \Box TA$ — дифференциальная кривая температуры; TF и ∂TF — кривые потери веса в молях H_2O и ее производная соответственно; точки на кривой $\not \Box TA$ соответствуют быстрому охлаждению образца для определения его состава

О присутствии в конечных продуктах дегидратации $Ni_3(PO_4)_2 \cdot 8H_2O$ безводного $Ni_3(PO_4)_2$ автор (2) не упоминает, что противоречит предварительным результатам, полученным в работе (3).

Целью данной работы было изучение процесса и состава продуктов дегидратации ${
m Ni}_3({
m PO}_4)_2 \cdot {
m SH}_2{
m O}$ с использованием современных физико-хими-

ческих методов исследования.

Состав синтезированного нами по методу (4) продукта отвечал бруттоформуле $Ni_3(PO_4)_2 \cdot 8H_2O$ с атомным отношением Ni: P = 3,00:2,01. При номощи метода инфракрасной спектроскопии не были обнаружены в исходном объекте исследования свободные гидроксильные группы, что свидетельствовало об отсутствии в нем примеси $NiHPO_4$ (в работе использовали спектрофотометр UR-2O. Концентрация фосфата никеля, спрессованного с бромидом калия, составляла 0,33 вес. %). Рентгенографическое исследова-

ние синтезированного Ni₃(PO₄)₂·8H₂O, проведенное с помощью УРС-50,

показало совпадение полученной дебаеграммы с известной (5).

Термический анализ Ni₃(PO₄)₂·8H₂O проводили при помощи дериватографа системы «Паулик». Термографирование образца осуществляли при



Рис. 2. Хроматограммы исходного Ni₃(PO₄)₂·8H₂O и продуктов его дегидратации в условиях термографирования. Хроматограммы исходного $Ni_3(PO_4)_2 \cdot 8H_2O$ (1) и продуктов его дегидратации при различных температурах: $2-215^\circ$; 3-260; $4-290^\circ$; $5-360^\circ$; $6-420^\circ$; $7-600^\circ$; $8-780^\circ$; $9-820^\circ$; $10-900^\circ$; $11-1100^\circ$. $1-0000^\circ$; $11-1100^\circ$. $11-1100^\circ$; $11-1100^\circ$; 11-1 \hat{IV} — тетраполифосфат; \hat{V} — место нанесения пробы на хроматографическую бумагу (старт)

атмосферном давлении в крышкой накрытом платиновом тигле. Скорость нагрева образца составляла градуса навеска минуту, 0.4 г. Для характеристиотдельных стадий процесса дегидратации $Ni_3(PO_4)_2 \cdot 8H_2O$ нагрев образца при достижении им заданной температуры прекращали, образец быстро охлаждали и анализировали. Перевод нерастворимых в воде продуктов дегидратации в растворимое состояние осуществляли путем ионного обмена на Н-катионите Дауэкс-50 (6). Фазовый состав образцов определяли при помоши метода восходящей хроматографии на

бумаге (7). Количественное содержание полифосфатов никеля находили

с использованием методики, описанной ранее. (\hat{s}) .

Согласно рис. 1А, на дифференцированной кривой отмечено наличие большого эндотермического эффекта с минимумом при 290° и глубокого экзотермического эффекта с максимумом при 790°. Эндотермический эффект обусловлен потерями тепла, вследствие удаления из исходного Ni₃(PO₄₂·8H₂O семи молей воды. Оставшаяся вода в количестве, соответствующем 1 молю, удаляется в интервале температур 400—780° без заметного на кривой ДТА эндотермического эффекта. По данным рентгенофазового анализа экзотермический эффект на кривой ДТА вызван процессом кристаллизации аморфного Ni₃(PO₄)₂.

Более тщательное исследование процесса обезвоживания Ni₃(PO₄)₂. •8Н₂О позволило выяснить некоторые его особенности. Так, в составе продуктов дегидратации, полученных в условиях термографирования при 260°. наряду с ортофосфатом никеля появляются небольшие количества его пи-

рофосфата (рис. 2), увеличивающиеся с повышением температуры.

Процесс дегидратации Ni₃(PO₄)₂·8H₂O, происходящий при его нагревании до температур, включая 360° (когда по дериватографическим данным удаляется 7 молекул воды), можно представить реакциями:

$$Ni_3 (PO_4)_2 \cdot 8H_2O \xrightarrow{360^{\circ}} Ni_3 (PO_4)_2 \cdot H_2O,$$
 (1)

$$Ni_{3} (PO_{4})_{2} \cdot 8H_{2}O \xrightarrow{360^{\circ}} Ni_{3} (PO_{4})_{2} \cdot H_{2}O, \tag{1}$$

$$Ni_{3} (PO_{4})_{2} \cdot 8H_{2}O \xrightarrow{360^{\circ}} 0,5 \text{ Ni}_{3}(PO_{4})_{2} (\text{Ni} HPO_{4})_{1-x} (\text{Ni}_{2}P_{2}O_{7})_{0,5x} \cdot 0,5 \text{ NiO}_{n} (OH)_{2-2n} \tag{2}$$

(значения x и n изменяются от 0 до 1).

Ориентировочные расчеты, проведенные на основе данных хроматографического анализа (табл. 1), позволили оценить количественную сторону каждого из этих процессов. Оказалось, что по схеме (1) превращается около 80% исходного Ni₃(PO₄)₂ 8H₂O, по схеме (2), когда образуется твердая фаза переменного состава, примерно $20\,\%$. При 420° , как показывают данные рис. 2 и табл. 1, приведенная схема дегидратации (2) осложняется тем, что наряду с разложением двузамещенный фосфатуникеля по уравнению: $2\text{NiHPO}_4 = \text{Ni}_2\text{P}_2\text{O}_7 + \text{H}_2\text{O}$, происходят его превращения в более высокополимерные фосфаты — триполифосфат и тетраполифосфат:

$$6\text{NiHPO}_4 \Rightarrow \text{Ni}_5 (P_3O_{10})_2 + \text{NiO}_n (O\text{H})_{2-2n} + (n+2) \text{ H}_2\text{O},$$

 $6\text{NiHPO}_4 = \text{Ni}_3P_4O_{13} + \text{Ni}_3 (PO_4)_2 + 3\text{H}_2\text{O}$

Как свидетельствуют результаты термического анализа синтезированной в данной работе по методике (9) гидрозакиси никеля Ni (OH) $_2 \cdot 1, 2H_2O$, величина n, характеризующая состав гидроксида никеля, становится равной единице только при температурах выше 630° (рис. 1, E).

Таблица 1

Состав продуктов дегидратации Ni₃ (PO₄)₂ · 8H₂O, полученных в условиях термографирования

Т-ра дегидр., °С	215	260	290	360	420	600	780 **
Содержание P ₂ O ₅ , % в виде ортофосфата « « пирофосфата » » триполифосфата	27,2 —	29,2 1,0 —	34,8 2,8 —	33,8 3,8 —	31,1 5,7 0,8*	32,1 5,3 0,3	33,6 3,7 0,9

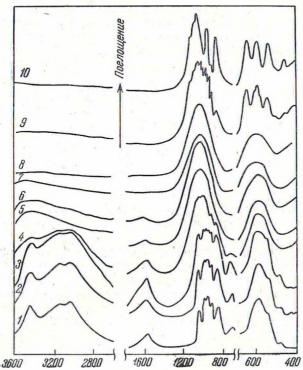
* Суммарное содержание три- и тетраполифосфата никеля.
** Определение содержания индивидуальных полифосфатов в продуктах дегидратации, полученных выше 780° (кристаллическая фаза), затруднено вследствие плохой растворимости образнов.

Дальнейший подъем температуры дегидратации фосфата никеля приводит к полному исчезновению в составе продуктов дегидратации тетраполифосфата никеля и уменьшению количеств триполифосфата и пирофосфата за счет увеличения содержания ортофосфата никеля (рис. 2, табл. 1). Это явление следует объяснить твердофазовыми реакциями, протекающими между полифосфатами и гидроксидом двухвалентного никеля:

$$\begin{array}{l} \operatorname{Ni}_{3}\mathrm{P}_{4}\mathrm{O}_{13} + \operatorname{NiO}_{n}\left(\mathrm{OH}\right)_{2-2n} \to 2\mathrm{Ni}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + (1-n) \; \mathrm{H}_{2}\mathrm{O}. \\ \operatorname{Ni}_{5}\left(\mathrm{P}_{3}\mathrm{O}_{10}\right)_{2} + \operatorname{NiO}_{n}\left(\mathrm{OH}\right)_{2-2n} \to 3\mathrm{Ni}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + (1-n) \; \mathrm{H}_{2}\mathrm{O}. \\ \operatorname{Ni}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + \operatorname{NiO}_{n}\left(\mathrm{OH}\right)_{2-2n} \to \mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2} + (1-n) \; \mathrm{H}_{2}\mathrm{O}. \end{array}$$

Согласно кривой ДТА, эти реакции не сопровождаются заметными тепловыми эффектами, что объясняется относительно небольшими количествами компонентов, участвующих в этих процессах (аналогичное явление отмечено нами при изучении процесса дегидратации $Co_3(PO_4)_2 \cdot SH_2O$).

Следует особо отметить, что процесс кристаллизации безводного ортофосфата никеля происходит только при удалении из твердой фазы последних количеств воды при 780° . Это подтверждает предположение, что при дегидратации $Ni_3(PO_4)_2 \cdot 8H_2O$ (схема (2)) образуется не мохашическая смесь продуктов реакции, а твердая фаза переменного состава, не распидающаяся на отдельные компоненты, пока в ее составе присутствуют даже небольшие количества влаги, координированной ионами пиксии.


На сложный характер связей воды в решетке исходного $Ni_3(PO_4)_2 \cdot 8H_2O$, оказывающий непосредственное влияние на процесс догидратиции,

указывают также инфракрасные спектры поглощения (рис. 3).

Наличие трех максимумов поглощения в и.-к. спектре исходного Ni₃(PO₄)₂·8H₂O с частотами 3430, 3150, и 3030 см⁻¹ следует объяснить существованием в его структуре нескольких видов воды, характеризующихся различными энергиями водородной связи (10). Значения этих связой (14,33 и 40 кдж/моль), оценка которых была произведена по методу (11), позволили отнести их к образованию межмолекулярных и внутримолекулярных водородных связей (12).

Анализируя спектры продуктов термической дегидратации $Ni_3(PO_4)_2 \cdot 8H_2O$, можно отметить, что по мере удаления воды из исходного образца

существенно изменяется характер спектров (рис. 3, 1—7). Интенсивность полос поглощения, отвечающая валентным и деформационным колебаниям воды (3600—3000, 1650—1500 и 800—700 см⁻¹), уменьшается, причем в первую очередь (температура 360° , соответствующая стадии процесса дегидратации по схеме (2)) исчезают полосы, присущие энергиям водородной связи, равным 33 и 40 кдж/моль. По мере повышения температуры дегидратации по 600° снимается искажение структуры тетраэдра $P0_4^{3-}$, обусловлен-

Рыс. 3. Инфракрасные спектры исходного Ni₃(PO₄)₂. 8H₂O (1) и продуктов его термической дегидратации при различных температурах. Обозначения теже, что на рис. 2

при более температурах наличием сильных волородных связей, и остаются полосы $(1100-1000 \text{ cm}^{-1})$, относяшиеся к вадентным трижды вырожденным колебаниям ортофосфата, содержашего тетраэдрический ион PO₄3- (13). Диффузный его спектра характер усложняется лишь после преобразования аморфного Ni₃(PO₄)₂ в кристаллический (рис. 3, 8 и 9) вследствие понижения симметрии тетраэдра РО43-.

Присутствия продуктах пегипратации $Ni_3(PO_4)_2 \cdot 8H_2O$ двузамешенного фосфата никеля NiHPO4 и полифосфатов частности, Ni₂P₂O₇) подтвердить при помощи и.-к. спектров однозначно не удалось. Это может быть объяснено как относительно малыми их концентрациями, так и особенностями их структуры, обусловленными тем, что **указанные** компоненты входят в состав твердой фа-

зы переменного состава, а не существуют в виде индивидуальных соединений.

Согласно нашим данным, утверждение автора $(^{1}, ^{2})$, что в составе продуктов дегидратации $Ni_{3}(PO_{4})_{2} \cdot 8H_{2}O$ при 1100° образуются небольшие количества триметафосфата никеля, следует отнести к ошибочному.

Авторы благодарят Р. Я. Мельникову за снятие инфракрасных спектров.

Белорусский технологический институт им. С. М. Кирова

Поступило 3 VI 1968

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Viltange, C. R., 256. 13, 2816 (1963). ² М. Viltange, Mikrochim. acta, 1, 1 (1964). ³ Г. Е. Тюленева, С. А. Амирова, В. В. Печковский, Изв. высш. учебн. завед., Хим. и хим. технол., 10, 8, 898 (1967). ⁴ К. Кlement, Н. Наselbeck, Zs. anorg. u. allgem. Chem., 334, 1—2, 24 (1964). ⁵ А. И. Миркин, Справочник по рентгеноструктурному анализу, М., 1961. ⁶ В. В. Печковский, Л. Н. Щегров, А. С. Шульман, Изв. АН КазССР, сер. хим., 1968, № 3. ⁷ М. Grunze, Е. Тhilo, Die Papierchromatographie der kondensierten Phosphaten, Berlin, 1955. ⁸ Л. Н. Щегров, В. В. Печковский, Н. В. Борисова, Докл. АН БССР, 11, № 9, 816 (1967). ⁹ Н. Г. Ключников, Руководство по неорганическому синтезу, М., 1965. ¹⁰ Дж. Пиментел, М. Клеллан, Водородная связь, М., 1964. ¹¹ Н. Д. Соколов, УФН, 57, 205 (1955). ¹² Современная химия координационных соединений, под ред. Дж. Льюиса, Р. Уилкинса, ИЛ, 1963. ¹³ К. Кольрауш, Спектры комбинационного рассеяния, ИЛ, 1952. 394