рые можно рекомендовать для армирования композиционных материалов, хорошо работающих в диапазоне высоких температур.

Summary

Temperature dependences of the ultimate strength are presented for wire specimens of BPMK and BP-273B alloys. Fibres are studied in annealed and deformed states within 290-2000 K temperature range and relative deformation rate 1.6.10-1 s-1. An analogy of regularities of ultimate strength variations is found for these alloys. A promising material is chosen to be used as reinforcing elements of metal composites.

1. Композиционные материалы волокнистого строения / Под ред. И. Н. Францевича и Д. М. Карпиноса. — Киев: Наук. думка, 1970.—403 с.

2. Механические испытания материалов при высоких температурах / М. М. Алексюк, В. А. Борисенко, В. П. Кращенко и др. — Киев: Наук. думка, 1980.—200 с.

3. Кращенко В. П., Стаценко В. Е. Устройство к разрывным машинам для испытания нитей, волокон, проволок, фольг и лент: Обзор. — Завод. лаб., 1981, № 1, с. 82—85.

4. Влияние температуры и скорости деформирования на механические свойства малолегированного сплава ниобия в. В. А. Борисенко, В. П. Кращенко, В. Е. Стаценко, В. К. Харченко. — Пробл. прочности, 1979, № 12, с. 77—78.

5. Борисенко В. А. Общие закономерности изменения механических свойств тугоплавких материалов в зависимости от температуры. Сообщ. 2. Температурная зависимость прочности вольфрама. — Там же, 1975, № 9, с. 23—

6. Борисенко В. А. Температурная зависимость прочности

молибдена. — Там же, 1976, № 12, с. 36—44. 7. Borisenko V. A., Krashchenko V. P. Temperature dependences of hardness of group IB metals. - Acta met., 1977, 25, N 3, p. 251—256.

8. Кращенко В. П., Стаценко В. Е. Влияние температуры и скорости деформирования на прочность тантала. Сообщ. 2. Механизмы и процессы протекания пластической

деформации. — Пробл. прочности, 1981, № 3, с. 60—65. 9. Кращенко В. П., Стаценко В. Е. Влияние температуры и скорости деформирования на механизмы и процессы, определяющие прочность сплава молибдена. - Там же, 1981, № 8, c. 77—81.

Ин-т пробл. прочности АН УССР

Поступила 04.07.83

УДК 541.64:539.3

О температурной зависимости энергии активации механического разрушения полимерных материалов

Н. Р. Прокопчук (Минск)

Несмотря на то что принципиальная возможность зависимости энергии активации механического разрушения от температуры $U_0(T)$ никогда не отрицалась, в литературных источниках продолжительное время высказывались различные точки зрения по этому вопросу [1-5]. Так, в [1, 2] зависимость $U_0(T)$ оценивалась как маловероятная, а эффект «смещения полюса», часто наблюдаемый при изучении температурно-силовой зависимости долговечности, связывался полностью с переменностью коэффициента у. В то же время отмечалось, что энергия активации механодеструкции с повышением температуры уменьшается по линейному закону [3]; что причиной зависимости $U_0(T)$ может быть изменение с температурой межмолекулярного взаимодействия [4]; трактовка смещения полюса как влияния температуры на величину U_0 отвечает [5] компенсационному эффекту, наблюдаемому в различных областях физической и химической кинетики.

В настоящее время после опубликования работ [6—10] факт существования зависимости $U_0(T)$ уже не вызывает сомнений, однако этот вопрос еще далек до полного разрешения. Важные теоретические расчеты, выполненные на основе фононной теории тепловых разрушающих флуктуаций [7, 8, 11], не получили пока должного подтверждения на опыте, так как прямых экспериментальных данных о влиянии температуры на энергию активации U_0 очень мало [9, 10 |. В связи с этим цель настоящей работы заключалась в получении новых опытных данных о зависимости $U_0(T)$. При этом основное влиянию релаксационвнимание уделялось переходов энергию активаных на ции U_0 .

Объектами исследования служили полимерные материалы, выпускаемые высоким тоннажом и широко применяемые на практике: пленка из полиэтилена высокой плотности ПЭВП марки 20806-024, вытянутая при 90°С в десять раз; ориентированная полипропиленовая пленка ПП $03\Pi10/005$; полиэтилентерефталатная пленка ПЭТФ (ТУ 6—05—1597—72); полиамидная пленка ПМ-1 (ТУ 6-05-1491-72); упрочненное штапельное волокно из поливинилового спирта «Винол МФ»; нить на основе перхлорвиниловой смолы марки «Хлорин»: капроновая нить (ГОСТ 7054—67).

Испытания механических свойств проводили на приборе УМИВ-3. Зажимная длина образцов 25 мм, среда — воздух, скорость растяжения 0,083 мм/с. Сечение образцов измеряли с помощью оптиметров ИЗА-2 и ИЗВ-2. Каждое значение прочности и модуля упругости, используемое для построения зависимостей $\sigma(T)$ и E(T), представляло собой среднее арифметическое десяти измерений. Прочность и модуль упругости определяли через каждые десять градусов. Погрешность регулирования температуры при термостатировании ± 1 град, время термостатирования 300 с. Погрешность определения σ и E не превышала 2 %, а расчеты величины U_0 по методике $[10-13] \pm 2$ кДж/моль.

Для построения зависимостей $\sigma(T)$ и E(T) полученные ряды экспериментальных точек аппроксимировались многочленом вида ax+b по методу наименьших квадратов. Коэффициенты теплового линейного расширения α в различных температурных интервалах рассчитывали по термомеханическим кривым, снятым на воздухе со скоростью подъема температуры 0,08 град/с на приборе УМИВ-3. Начальные напряжения на образцы составляли 1 ... 2 % разрывных. Зажимная длина образцов равнялась 20 мм, режим нагружения — квазистатический, вид деформа-

ции - растяжение.

Мольные теплоемкости при постоянном объеме $C_{\rm V}$ в условиях различных температур определяли на основании данных работ [14, 15]; температурное положение релаксационных переходов (РП) устанавливали методом термомеханиче-

ской спектрометрии [16].

На рис. 1 представлены результаты термомеханического анализа, указывающие на наличие в изученных полимерах в исследованном интервале температур от одного до трех РП (обозначены точками на кривых термомеханического анализа (ТМА)). Не останавливаясь на интерпретации этих переходов, так как это уже сделано другими авторами и подробно рассмотрено, например, в [9, 16], следует, однако, обратить внимание на скачкообразное изменение коэффициента а в точках РП, проявляющееся в виде изломов на ТМА-кривых при этих температурах.

Необходимо также подчеркнуть, что причиной теплового расширения твердых тел является ангармонический характер колебаний атомов [17], связанный в полимерах в первую очередь с микропроцессами разрыва и восстановления межмолекулярных связей [18], т. е. что изменение энергии межмолекулярного взаимодействия $E_{\text{м.в.}}$ —первопричина РП в полимерах. Другие молекулярные явления: образование свободного объема при тепловом расширении и «размораживание» различных типов молекулярных движений вторичны [18].

Сопоставление температурных зависимостей прочности и модуля упругости с ТМА-кривыми показывает, что на кривых $\sigma(T)$ (рис. 2) и E(T)

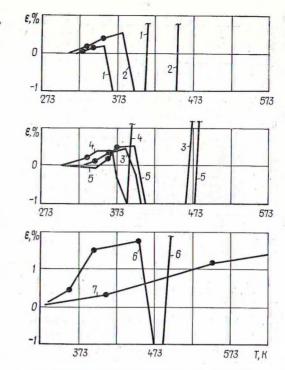


Рис. 1. Термомеханические кривые: $1-\Pi \ni B\Pi$; $2-\Pi\Pi$; $3-\Pi BC$; $4-\Pi BX$; $5-\Pi KA$; $6-\Pi \ni T\Phi$; $7-\Pi M$ -1.

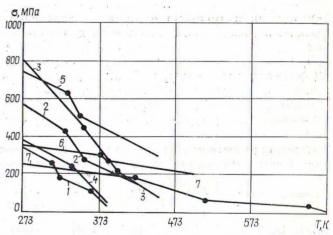


Рис. 2. Зависимость прочности на разрыв от температуры. (Обозначения те же, что на рис. 1.)

(рис. 3), так же как и на кривых в(T) (рис. 1), наблюдаются сингулярности, связанные с РП. Данные, приведенные на рис. 1—3, хорошо согласуются с результатами работы [19], в которой показана связь между температурами возникновения высокочастотных движений элементов макромолекул, фиксируемых методом ядерного магнитного резонанса (ЯМР), и изменениями разрушающего напряжения.

Появление изломов на зависимости $\sigma(T)$ справедливо связывалось в работе [19] с изменением межмолекулярного взаимодействия, однако при

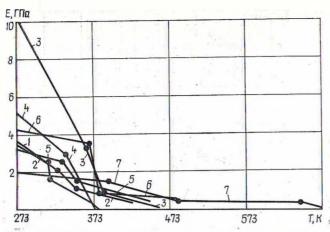


Рис. 3. Зависимость модуля упругости от температуры. (Обозначения те же, что на рис. 1.)

этом предполагалось слабое влияние $E_{\text{м.в.}}$ на U_0 и сильное на величину γ . В более поздней работе [10] скачкообразное изменение прочности в точках РП (изменение наклона кривой $\sigma(T)$) связывалось в первую очередь с соответствующим изменением параметра U_0 .

Полученные в настоящей работе данные о величине U_0 приведены в таблице, из которой видно, что значения U_0 , определенные по зависимости $\sigma(T)$, для всех исследованных полимеров, так же как и величина α , изменяются скачкообразно в точках РП. Причем если для полимеров с небольшой величиной $E_{\text{м.в.}}$ [14] (ПЭВП, ПП, ПВХ) такое изменение энергии активации U_0 составляет от нескольких единиц до двух десятков кДж/моль, то для полимеров, характеризующихся высокой интенсивностью межцепного взаимодействия [14] (ПКА, ПЭТФ, ПМ-1), оно

может достигать более 100 кДж/моль (таблица). Правильность полученных значений U_0 до и после РП в настоящее время экспериментально проверить можно двумя способами.

Первый из них основан на сопоставлении величин U_0 и $C_{\rm V}/\alpha$, определенных до и после РП, так как между ними существует связь, установленная С. Н. Журковым [7]:

$$U_0 = \varepsilon_* \frac{C_{\rm V}}{\alpha} \,, \tag{1}$$

где ϵ_* — относительное удлинение, при котором разрывается межатомная связь.

Поскольку согласно [7]

$$\varepsilon_* = \frac{\sigma_{\text{reop}}}{E}$$
 (2)

 $(\sigma_{\text{теор}}$ — теоретическая прочность; E — модуль упругости), а в соответствии с известным соотношением Орована

$$\sigma_{\text{Teop}} \approx 0.1E,$$
 (3)

то из (1) — (3) следует, что

$$U_0 \approx 0.1 C_{\rm V}/\alpha.$$
 (4)

Из рис. 4, построенного на основании экспериментальных данных по U_0 , $C_{\rm V}$, α (таблица), видно, что функциональная связь (1), установленная в [7] теоретически, выполняется на опыте. Наклон прямой на рис. 4 дает значение ϵ_* , равное 0,11, что находится в хорошем соответствии с соотношением (3) и указывает на правильность полученных в настоящей работе значений U_0 .

Второй способ заключается в сравнении значений энергии активации U_0 и отношения E_0^0/β_0 [11], соответствующих температурам до и после РП. Согласно [11] зависимость U_0 (E_0^0/β_0) пред-

Температуры релаксационных переходов $T_{\rm P\Pi}$, энергии активации механического разрушения U_0 , мольные теплоемкости $C_{
m V}$ и коэффициенты теплового линейного расширения α для полимеров

Полнмер (материал)	т _{РП} . К	<i>U₀.</i> кДж/моль	<i>U</i> ₀ , кДж/моль	Су. кДж/ /моль∙К	С _V , кДж/ /моль-К	α·104, K ^{−1}	$\alpha' \cdot 10^4$, K^{-1}	E_0^0/β_0 , K	$E_0^{0'}/\beta_0$, K
ПЭВП (пленка)	313 323	108	85 99	0,049 0,052	0,052 0,053	0,60 0,78	0,78 0,55	400 320	320 390
ПП (пленка)	328	119	102	0,074	0,075	-0,80	1,0	415	375
	352	102	124	0,075	0,078	1,0	0,68	375	465
ПВС (волокно)	363	111	106	0,067	0,090	0,7	1,0	410	400
	393	106	120	0,090	0,050	1,0	0,53	400	473
ПВХ (нить)	338	114	100	0,072	0,097	0,67	1,1	425	380
ПКА (нить)	335	169	100	0,180	0,202	1,1	2,0	575	370
	350	100	148	0,202	0,05	2,0	0,4	3 7 0	500
ПЭТФ (пленка)	373	222	105	0,220	0,31	1,21	3,0	800	390
	383	105	202	0,310	0,055	3,0	0,33	390	710
ПМ-1 (пленка)	393	202	140	0,057	0,070	0,32	0,50	735	520
	493	140	264	0,070	0,092	0,50	0,395	520	900
	653	264	176	0,092	0,140	0,395	0,90	900	675

 Π р и м е ч а н и е. Значения U_0 , C_V , α , E_0^0/β_0 без штрихов—до релаксационных переходов, со штрихами—после них.

ставляет собой прямую линию, проходящую через начало координат. Значения E_0^0 получают экстраполяции экспериментальной температурной зависимости модуля упругости к $T=0\,$ K, при этом В представляет собой тангенс угла наклона линии E(T) [11], поэтому E_0^0/β_0 есть температура, получаемая экстраполяцией E(T) к E=0. Значения E_0^0/β_0 , найденные по данным рис. 3. приведены в таблице, а результаты сопоставления их с величинами U_0 — на рис. 5. Из последнего видно, что экспериментальные точки для изученных полимерных материалов при температурах ниже и выше РП группируются вблизи прямой линии, проходящей через начало координат, следовательно, связь величин U_0 и E_0^0/β_0 как до, так и после РП оправдывается на опыте.

Результаты, представленные на рис. 4 и 5, убедительно свидетельствуют также о том, что температурная зависимость прочности (рис. 2) позволяет определять достоверные значения U_0 в любых температурных интервалах, заключенных между температурой хрупкости, ниже которой реализуется механизм коллективного разрыва цепей [20], и температурой вязкого течения, выше которой разрывов химических связей

в поле механических сил не происходит.

При определении величины U_0 по зависимости $\sigma(T)$ оказывается, что в температурных интервалах между двумя ближайшими РП с точностью до ± 2 кДж/моль $U_0 \approx \text{const.}$ Это хорошо согласуется с последними оценками температурного коэффициента уменьшения U_0 , равного для разрушения полимеров ... 34 Дж • К-1 • моль-1 [8]. Поскольку в изученных полимерах РП удалены друг от друга не более чем на 100° , снижение U_0 между РП не превышает 0,7 ... 3,4 кДж/моль, что находится в пределах погрешности определения U_0 по зависимости $\sigma(T)$ и не фиксируется этим методом. Так как в исследованном температурном интервале изученные полимеры не подвержены никаким химическим превращениям, объяснить изменение величины U_0 в точках РП, придерживаясь распространенного мнения [2] о равенстве энергий активации процессов механо- и термодеструкции, невозможно. В связи с этим предложенное в [21, 221 соотношение

$$U_0 = E_{\text{dec}} + E_{\text{M.B}}, \tag{5}$$

где $E_{\rm дес}$ — энергия активации термоокислительной деструкции полимера (в случае определения U_0 в воздушной среде), получает в настоящей

работе дополнительное подтверждение.

Из [5] следует, что величина U_0 состоит из двух компонент: атермической $E_{\rm дес}$ и температурнозависимой $E_{\rm M.B.}$. Поэтому с повышением температуры возможно не только уменьшение энергии активации U_0 , но и возрастание ее (ПМ-1 в таблице), что объясняет наблюдавшисся ранее [2] случаи «смещения» полюса с $T_{\rm H} < 0$.

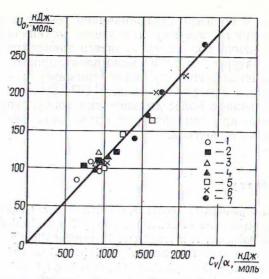


Рис. 4. Зависимость энергии активации U_0 от мольной теплоемкости Cv и коэффициента теплового линейного расширения α для полимерных материалов. (Обозначения те же, что на рис. 1.)

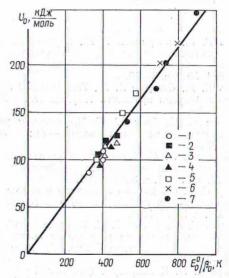


Рис. 5. Связь между энергией активации U_0 и величиной отношения E_0^0/β_0 для полимерных пленок и волокон. (Обозначения те же, что на рис. 1.)

Вследствие межмолекулярного взаимодействия часть напряжений, действующих на макромолекулу, переносится в окружающую ее область [9], поэтому ее разрыв возможен только после преодоления энергетического барьера, равного сумме энергии диссоциации главных связей $E_{\rm дес}$ и эпергии молекулярной когезии $E_{\rm м.в.}$ С повышением температуры, как правило, $E_{\rm м.в.}$ уменьшается и ее влияние на энергетику механодеструкции ослабевает, величина U_0 снижается. Влияние энергии $E_{\rm м.в.}$ на передачу напряжений исчезает только вблизи температуры плавления полимера [9]. Поэтому $U_0 \approx E_{\rm дес}$ только при температурах, близких к температуре плавления.

Таким образом, первопричиной температурной зависимости энергии активации механического разрушения полимеров является зависимость от температуры энергии межмолекулярного взаимолействия. Незначительно снижаясь в температурных интервалах между РП, величина U_0 претерпевает более сильное скачкообразное изменение при температурах протекания релаксационных процессов.

Summary

Direct experimental proofs are obtained for temperature $V_0(T)$ dependence of activation energy for mechanical failure of polymers. It is found that V_0 varying slightly within temperature ranges between physical transitions endures a sudden change at temperatures of proceeding relaxation processes proper. Significance of the intermolecular interaction energy as a temperature-dependent component of V_0 is substantiated. It is shown that the temperature dependence of strength permits determining reliable values of Vo within a wide temperature range.

1. Регель В. Р., Санфирова Т. П., Слуцкер А. И. Об эффекте «смещения полюса» при изучении температурносиловой зависимости долговечности. — Пробл. прочности, 1974, № 2, с. 3—10.

2. Регель В. Р., Слуцкер А. И., Томашевский Э. Е. Кинетическая природа прочности твердых тел. — М.: Наука,

1975.—560 с. 3. *Бартенев Г. М., Зуев Ю. С.* Прочность и разрушение Л.: Химия, высокоэластических материалов. — М.;

4. Томашевский Э. Е. Қ энергетике распада механически напряженных химических связей. — Физика твердого тела, 1970, 12, № 11, с. 3202—3207.

- 5. Ратнер С. Б. Об энергии активации процесса механического разрушения полимеров. — Докл. АН СССР, 1968,
- 183, № 6, с. 1297—1300. 6. *Бартенев Г. М., Савин Е. С.* Влияние «слабых» связей в полимерных цепях на разрушение полимеров. - Высокомолекуляр. соединения. Сер. Б, 1977, 19, № 9,

7. Журков С. Н. К вопросу о физической основе прочности. — Физика твердого тела, 1980, 22, № 11, с. 3344— 3349.

8. Бартенев Г. М., Савин Е. С. Влияние фононной подсистемы на вероятность распада полимерной цепи. - Высокомолекуляр. соединения. Сер. А, 1981, 23, № 12, c. 2527—2764.

9. Влохович А., Линек М. О применении теории Журкова — Абасова для описания свойств прочности волокон из полиэтилентерефталата. — Acta Polymerica, 1981, 32,

Hf. 8, S. 445-452.

10. Прокопчук Н. Р. О температурной зависимости прочности волокно- и пленкообразующих полимеров. - Изв. АН БССР. Сер. физ.-техн., 1981, № 4, с. 62—66.

11. Связь между прочностными и упругими свойствами полимеров / В. И. Веттегрень, А. А. Кусов, Л. Н. Коржавин, С. Я. Френкель. — Высокомолекуляр. соединения. Cep. A, 1982, 24, № 9, c. 1958—1967.

12. Температурная зависимость прочности полимеров / А. В. Савицкий, В. А. Мальчевский, Т. П. Санфирова, П. Зо-

син. — Там же, 1974, 16, № 9, с. 2130—2135.

13. Анализ экспериментальных ошибок при определении энергии активации химических нитей по температурной зависимости прочности / А. В. Савицкий, И. Л. Фролова, В. П. Демичева, Г. Н. Шмикк. — Химич. волокна, 1982, № 4, с. 36—38. 14. Ван Кревелен Д. В. Свойства и химическое строение полимеров. — М.: Химия, 1976.—416 с.

Вундерлих Б., Баур Г. Теплоемкость линейных полимеров. — М.: Мир, 1972. — 238 с.

16. Изучение релаксационных явлений в полимерах термомеханическим методом / Н. Р. Прокопчук, В. В. Кренев, Р. Я. Резлер и др. — Высокомолекуляр. соединения. Сер. А, 1977, 19, № 7, с. 1605—1614. 17. Перепечко И. И. Введение в физику полимеров. — М.:

Химия, 1978.—312 с.

- 18. Кан К. Н. Вопросы теории теплового расширения полимеров. — Л.: Изд-во Ленингр. ун-та, 1975.—78 с. 19. Песчанская Н. П., Степанов В. А. Влияние молекуляр-
- ной подвижности, вида напряженного состояния, ориентации и пластификации на зависимость механических свойств линейных полимеров от температуры. — Механика полимеров, 1971, № 1, с. 30—35.
 20. Бартенев Г. М. Природа временной зависимости проч-

ности и механизма разрушения стеклообразных полимеров выше температуры хрупкости. — Высокомолекуляр. соединения. Сер. А, 1969, 11, № 10, с. 2341—2347.

21. Прокопчук Н. Р. О соотношении энергий активации процессов механо- и термодеструкции полиимидов ароматического строения. — Изв. АН БССР. Сер. хим.,

1980, № 4, с. 57—60. 22. *Прокопчук Н. Р.* Метод изучения межмолекулярного взаимодействия в аморфной фазе полимерных материалов. — Докл. АН БССР, 1982, 26, № 11, с. 1020-1023.

Ин-т физ.-орган. химии АН БССР

Поступила 26.03.83

УДК 539.3:678

Исследование напряжений и разрушения наполненных полимеров на стадии отверждения

И. И. Бугаков, Ю. К. Глотова, И. И. Демидова, В. И. Иржак, А. М. Мусина, Б. А. Розенберг (Ленинград, Москва)

Прочность композитов связана с внутренними напряжениями, которые неизбежно образуются в процессе многостадийного синтеза. Помимо

химического воздействия имеются температурные, а также механические источники напряжений.