В.М. Константинов, д-р техн. наук, доцент; Г.А. Ткаченко, канд. техн. наук; А.В. Ковальчук асп. (БНТУ, г. Минск)

ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ ИЗДЕЛИЙ, УПРОЧНЕННЫХ PVD ПОКРЫТИЯМИ

Тонкие керамические покрытия, не смотря на их химическую инертность, не обладают достаточными защитными свойствами от коррозии. Это обусловлено тем, что в них, как правило, присутствуют в большом количестве поры и дефекты, через которые агрессивная среда может проникать до границы раздела покрытия и подложки [1]. Поэтому коррозионная стойкость поверхности с покрытием будет определяться главным образом коррозионной стойкостью основного материала. Поэтому коррозионные испытания композитов с покрытиями следует проводить как для объемных материалов.

Одним из наиболее быстрых и эффективных на практике является способ проведения коррозионных испытаний в камере соляного тумана, осуществляемый на кафедре «Материаловедение в машиностроении» БНТУ на установке ASCOTT S 120 IP, позволяющей проводить коррозионные испытания в соответствии со стандартами ASTM В 117, ГОСТ Р 9.316-2006, СТБ ISO 2081-2009, ВУ и корректировать условия испытаний с учетом реальных условий эксплуатации изделий. В ходе работы была исследована коррозионная стойкость образцов технического железа, упрочненных в результате комплексной упрочняющей обработки [2, 3] — карбонитрация и нанесение PVD покрытия на базе нитрида титана. Коррозионные испытания композитов проводили при непрерывном распылении 10 % водного раствора NaCl при температуре 20 °C.

Рисунок 1 – Камера соляного тумана ASCOTT S 120 IP

Методика определения коррозионной стойкости заключалась в сопоставлении массы образцов и оценке площади поверхности занятой продуктами коррозии. Перед испытаниями образцы были взвешены на аналитических весах и сделаны фотографии их поверхности. Площадь поверхности образца, контактирующей с раствором, составляла 100 мм². Порядок проведения испытаний соответствовал ГОСТ 9.308.

Таблица 1 – Результаты испытаний образцов армко-железа

Образцы	Доля поверхности, пораженная коррозией, %				
	после				
	1 ч	6 ч	12 ч	24 ч	48 ч
Армко-железо с покрытием TiN	15	80	86	98	100
Армко-железо после карбонитрации	1	5	10	30	40
Армко-железо после карбонитрации и нанесения PVD покрытия TiN	0	1	3	5	20

Установлено, что наиболее интенсивное развитие коррозии происходит на неупрочненных образцах армко-железа с PVD покрытием TiN. Коррозия развивалась с участков микропор покрытия и протекала под ним, распространяясь по железной подложке. Прирост массы образца составил 0,075 г.

Карбонитрация армко-железа привела к повышению его коррозионной стойкости в 2,5 раза, что связано с явлением пассивации, при котором на поверхности образуется защитная пленка, препятствующая проникновению агрессивной среды. Прирост массы составил не более 0,03 г.

Наибольшую коррозионную стойкость показали образцы армкожелеза, подвергнутые карбонитрации с последующим нанесением PVD покрытия TiN. Значительные очаги поражения коррозией появились на них только после 48 ч испытаний, прирост массы составил 0,006 г.

Таким образом, коррозионная стойкость изделий с PVD покрытиями не определяется полностью защитными свойствами самих покрытий. Протекание коррозии может иметь место даже в случае отсутствия визуальных признаков на поверхности изделия с покрытием. Прежде всего, стойкость к агрессивным средам таких композитов будет определяться стойкостью стальной подложки. В то

же время наличие химически инертного покрытия является барьером для проникновения агрессивной среды к стальной основе, а его защитные способности, определяемые, главным образом, микро- и нанопористостью, в дополнение к повышению коррозионной стойкости результате химико-термической обработки могут дать кумулятивный эффект.

ЛИТЕРАТУРА

- 1. Nanostructured Coating (Eds. A. Gavaleiro, J.T. De Hosson). Berlin: Springer-Verlag, 2006. 648 p.
- 2. Константинов В.М. Повышение жесткости металлической основы систем "конструкционная сталь нитрид титана" / В.М. Константинов, А.В. Ковальчук, Г.А. Ткаченко // Металлургия: Республ. межведом. сб. науч. тр.: в 2 ч. Минск: Белорусская наука, 2013. Вып. 36, ч.2. С. 152—161.
- 3. Ковальчук, А. В. Методический подход к созданию топокомпозита триботехнического назначения «сталь PVD покрытие» / А. В. Ковальчук, Г. А. Ткаченко // Современные методы и технологии создания и обработки материалов : сборник научных трудов : в 3 кн. Минск: ФТИ НАН Беларуси, 2014. Книга 1. С. 164—174.