

2-й Международный семинар по спектроскопии и фотохимии макрогетероциклических соединений 18–19 октября 2022 г.

Минск, БЕЛАРУСЬ

Non-equivalence of α and β subunits within human hemoglobin in conformational relaxation and molecular oxygen rebinding

<u>S.V. Lepeshkevich</u>^a, I.V. Sazanovich^b, M.V. Parkhats^a, S.N. Gilevich^c, B.M. Dzhagarov^a

^aB.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus,
68 Nezavisimosti Ave, Minsk 220072, Belarus,
e-mail: s.lepeshkevich@ifanbel.bas-net.by
^bCentral Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, UK
^cInstitute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5 Academician V. F. Kuprevich Street, Minsk 220141, Belarus

Picosecond to millisecond laser time-resolved transient absorption spectroscopy was used to study molecular oxygen (O2) rebinding and conformational relaxation following O_2 photodissociation in the α and β subunits within human hemoglobin in the quaternary R-like structure. Oxy-cyanomet valency hybrids [1] were used as models for oxygenated R-state hemoglobin. An extended kinetic model for geminate O₂ rebinding in the ferrous hemoglobin subunits, ligand migration between the primary and secondary docking site(s), and nonexponential tertiary relaxation within the R quaternary structure, was introduced and discussed. Significant functional non-equivalence of the α and β subunits in both the geminate O₂ rebinding and concomitant structural relaxation was revealed. For the β subunits, the rate constant for the geminate O₂ rebinding to the unrelaxed tertiary structure and the tertiary transition rate were found to be greater than the corresponding values for the α subunits. The conformational relaxation following the O_2 photodissociation in the α and β subunits was found to decrease the rate constant for the geminate O₂ rebinding, this effect being more than one order of magnitude greater for the β subunits than for the α subunits. Evidence was provided for the modulation of the O_2 rebinding to the individual α and β subunits within human hemoglobin in the R-state structure by the intrinsic heme reactivity through a change in proximal constraints upon the relaxation of the tertiary structure on a picosecond to microsecond time scale.

REFERENCE(S)

1. S.V. Lepeshkevich, I.V. Sazanovich, M.V. Parkhats, S.N. Gilevich, B.M. Dzhagarov. Chem. Sci., 12 (2021) 7033–7047.