УДК 630* 265/.266+630*614

Светлой памяти проф. В.К.Поджарова посвящается

РОСТ ДРЕВЕСНЫХ РАСТЕНИЙ НА МЕЛИОРИРОВАННЫХТОРФЯНО-БОЛОТНЫХ И МИНЕРАЛЬНЫХ ПОЧВАХ, ПОДВЕРЖЕННЫХ ВЕТРОВОЙ И ВОДНОЙ ЭРОЗИИ

ИСАЙЧИКОВ М.Ф.*, ШТУКИН С.С.**

- * Институт леса НАН Беларуси;
- ** Двинская экспериментальная лесная база Института леса НАН Беларуси

Известно, что широкомасштабные осущительные мелиорации, проведенные в Белорусском Полесье и воздействующие на все компоненты окружающей природной среды, вывели данный регион из экологического равновесия (И.В. Войтов, 1998). Эти работы выполнялись без достаточного экологического обоснования и с «доработкой» проектов на местном уровне, в результате которой нередко кустарники сведены полностью, облесение не проводилось, лесополосы высажены в минимальном количестве, орошение не работает, озера пропали, торфяники постоянно распахиваются, а мощность органогенного слоя уменьшается на 1-2 см в год (И.И. Лиштван, Н.Н. Бамбалов, Л.М. Ярошевич, 1998). В результате усилились заморозки, появляются смерчи, периодически закрывающие горизонт, а также летние и осенние паводки, ставшие национальным бедствием.

На сегодняшний день проблема смягчения негативного воздействия осущительной мелиорации на природу Полесья стоит очень остро. Не вызывает малейшего сомнения, что уже более 20-ти лет тому назад проф. В.К. Поджаров предвидел необходимость улучшения полесских агроландшафтов лесоводственными методами путем создания и выращивания полезащитных лесных полос (В.Б. Орловский, В.К. Поджаров, В.Н Воробьев, 1980). Ведь только глубокая убежденность в целесообразности этого метода позволила проф. В.К. Поджарову и его ученикам самостоятельно выполнить огромную работу по выращиванию большого ассортимента древесных и кустарниковых пород для полезащитного лесоразведения и испытать эффективность их использования в условиях мелиорированных торфяно-болотных и минеральных почв, подверженных ветровой и водной эрозии.

Закладка опытных полезащитных полос на осущенных торфяно-болотных почвах выполнена под руководством проф. В.К. Поджарова весной 1978 г. на объектах «Якимовка» и «Белое болото» Речицкого района Гомельской области на временном питомнике.

Опытные полезащитные полосы состоят из 3-5 рядов. Почвы вдоль по трассе посадок разные: от дерново подзолистых песчаных на буграх до торфяно-болотных разной мощности.

В качестве посадочного материала использовались: 3-4-летние саженцы тополей волосистоплодного и канадского, клена остролистного, липы мелколистной и рябины обыкновенной; 3-летние — ясеня американского и березы пушистой, бородавчатой; 5-летние — ели обыкновенной; 2-3-летние сеянцы дуба, пузыреплодника калинолистного и 1-летние сеянцы сосны обыкновенной.

Посадка саженцев и сеянцев производилась по дну борозд, нарезанных плугом ПКЛ-70. Расстояние между рядами 2 м, а расстояние в ряду от 0,7 до 1,2 м.

Изучение роста древесных растений в части опытных полезащитных лесных полосах на осущенных торфяно-болотных и на мелиорированных минеральных почвах, проведено в мае 2001 г. (таблица).

Показатели роста древесных пород в полосах на мелиорированных землях существенно различаются. Лучший рост в высоту и по диаметру отмечен у тополя волосистоплодного и канадского. Эти

Таблица. Ростовые показатели древесных растений на мелиорированных торфяно-болотных и минеральных почвах, подверженных ветровой и водной эрозии

Древесные растения	Назначение полезащитной лесной полосы					
	полоса у магистрального канала		внутриполевая лесополоса		полоса на минеральной почве	
	Д, см	Н, м	Д, см	Н, м	Д, см	Н, м
Тополь канадский, волосистоплодный	40±2,4	20,3±1,3	40±0,6	19,6±0,5	28±1,9	19,2±0,4
Сосна обыкновенная	10,3±0,4	9,4±0,3	-		18,5±1,0	10,3±0,4
Ясень американский	12,0±0,7	10,6±0,6	11,7±0,4	8,4±0,2		7,6±0,5
Береза пушистая, бородавчатая	14,0±1,0	10,9±0,7	-		14,2±1,1	12,6±0,7
Клен остролистный	12,4±0,7	10,6±0,7	16,0±1,1	8,0±0,6	-	13,0±0,7
Липа мелколистная	10,9±0,7	12,1±0,4	-	-	4,5±0,3	5,0±0,4
Ель обыкновенная	9,8±0,6	8,4±0,7				
Ива ломкая	-	. 4	22,4±1,6	14,0±0,5		
Рябина обыкновенная	8,4±0,5	7,0±0,3	-			
Дуб черешчатый	-	- 1	-	-	4,4±0,2	3,5±0,2

Рис. Формирование крон древесных растений, произрастающих в полезашитной лесной полосе вдоль магистрального канала на торяно-болотной почве

виды, высаженные 3—4-летними черенковыми саженцами и высотой около 2 м, достигли к 23 годам средней высоты 19,2—20,3 м, а среднего диаметра на 1,3 м 28—40 см. При этом, на глубокозалежных торфяно-болотных почвах диаметр в 1,4 раза больше, чем на минеральных. По интенсивности роста и быстроте формирования полос эти породы не имеют себе равных на мелиорированных землях. К тому же, тополь волосистоплодный весьма рано распускается весной.

Береза пушистая и бородавчатая на мелиорированных землях обладают высокой энергией роста. Они, высаженные посадочным материалом высотой около 110 см, не дают существенного преимущества в наращивании диаметра на минеральных и глубокозалежных торфяных почвах. Различия по высоте на 15,6%. Эти породы дают возможность быстро сформировать полосы и должны применяться в смеси с тополями.

Хорошие показатели роста крон (рис.) на мелиорированных почвах и у ясеня американского, липы мелколистной, клена остролистного, ивы ломкой и рябины обыкновенной.

Эти породы способны образовывать достаточно развитые кроны и от подбора которых в значительной мере зависят характер и интенсивность кронообразовательного процесса, что в свою очередь имеет ведущее значение в динамике формирования вертикального профиля насаждений. Последний является той основой, от которой в конечном итоге зависят защитные свойства насаждений.

Список литературы

- 1. Войтов И.В. Экологические проблемы Полесья и основные направления их решения //Природные ресурсы, 1998, № 2. — С. 47-57.
- 2. Лиштван И.И., Бамбалов Н.Н., Ярошевич Л.М. Экологические последствия гидромелиорации в Полесье //Природные ресурсы. 1998, № 2. — C. 57-62.
- 3. Орловский В.Б., Поджаров В.К., Воробьев В.Н. Защитное лесоразведение в Беларуссии. — Мн.: Ураджай, 1980. — С. 105-132.

УДК 630* 165.52

ОЦЕНКА КЛИМАТИПОВ СОСНЫ ОБЫКНОВЕННОЙ И ЕЛИ ЕВРОПЕЙСКОЙ В УСЛОВИЯХ БЕЛАРУСИ

КОВАЛЕВИЧ А.И., БАРСУКОВА Т.Л., СИДОР А.И. Институт леса НАН Беларуси

Одним из эффективных путей в лесной селекции является применение межпопуляционного отбора на географическом уровне.

Использование этого метода географических культур наиболее пригодно для древесных видов, ареалы которых занимают огромные территории в разных лесорастительных условиях. Именно такими породами являются сосна обыкновенная (Pinus silvestris L.) и ель европейская (Picea abies Karst.).

С целью выявления наиболее ценных происхождений, отличающихся сочетанием высокой продуктивности и устойчивости нами было проведено обследование 20-30-летних культур, заложенных в Кореневской ЭБ ИЛ НАНБ, Двинской ЭБ ИЛ НАНБ, Чериковском, Минском и Барановичском лесхозах. Одним из инициаторов создания таких экспериментальных объектов в Беларуси являлась зав. лабораторией лесной селекции и семеноводства З.С. Поджарова. В настоящее время географические культуры, созданные под ее руководством составляют единую сеть по изучению эколого-географической изменчивости (таблица).

Всего на шести объектах испытывается 181 климатип сосны обыкновенной и 93 климатипа ели европейской.

В ходе обследования в географических культурах замеряли диаметры и высоты, определяли сохранность климатипов, качество стволов, плодоношение, выявляли наличие повреждений энтомои фитовредителями. Полученный полевой материал обрабатывался методами математической статистики с использованием дисперсионного анализа.