водящая к плохо управляемому процессу резания и способствующая остановкам диска в пропиле — стопорению его.

Избавиться от такого нежелательного явления, обусловленного острыми значениями кинематического угла встречи θ , можно несколькими способами, например:

установкой системы регулирования скорости надвигания пильного диска в зависимости от диаметра распиливаемого бревна;

изменением вращения пильного диска на обратное;

изменением взаимного расположения маятника с пильным диском и бревна.

Таким образом, в результате изучения кинематики раскряжевочного станка АЦ-3С определены основные факторы, влияющие на надвигание пильного диска в рез и процесс пиления в целом, а также внесены предложения по улучшению работоспособности станка.

ПИТЕРАТУРА

1. Бершадский А.А. О расчете режимов продольного пиления. — Лесная промышленность, 1964, № 12, с. 8—13. 2. Добровольский В.А., Ковалев Н.Ф. Дифференциальные уравнения колебаний фундаментов раскряжевочных станков АЦ-3С. — В сб.: Механизация лесоразработок и транспорт леса. Минск: Вышэйшая школа, 1975, вып. 5, с. 10—23.

УДК 634.03:534

А.Ф. ТИХОНОВ, канд.техн.наук, профессор, А.В. ГЕРМАЦКИЙ, канд.техн.наук, В.А. СИМАНОВИЧ, ассистент, П.Ф. РУДНИЦКИЙ, ст. преподаватель, С.И. ДЕРВАНОВ, студент (БТИ), В.Ф. ШАМАЛЬ, инженер (начальник ПТУ Минлеспрома БССР)

ИССЛЕДОВАНИЕ ЭКСПЛУАТАЦИОННЫХ ПОКАЗАТЕЛЕЙ КОЛЕСНЫХ ТРЕЛЕВОЧНЫХ ТРАКТОРОВ ЛТ-157 В УСЛОВИЯХ БССР

Интенсивное ведение лесозаготовок в условиях БССР требует внедрения новых технологических процессов и систем машин. Одним из путей решения вопроса бесперебойной поставки древесины потребителю является использование колесных тракторов класса 30 кН на подвозке древесины от лесосеки к магистральным дорогам.

Рассмотрим колесную транспортную систему, производящую трелевку деревьев в полуподвешенном состоянии и на прицепном технологическом оборудовании. Для этого воспользуемся известной методикой [1].

Удельные давления на грунт можно определить как отношение динамической нагрузки на площадь контакта шины с дорогой

$$Z_{y} = \frac{Z_{\partial}}{S_{0}} \tag{1}$$

Динамическая нагрузка Za будет равна

$$Z_{\partial} = Z_{n} (1 + \overline{a}) , \qquad (2)$$

где Z_{Π} — полная реакция дороги; \ddot{a} — вертикальное ускорение неподрессоренной массы трактора.

При движении по микронеровностям почвы транспортная система совершает вертикальные колебания, в результате чего площадь контакта шины с грунтом постоянно меняется. Пределы изменения вертикальных ускорений можно определить из выражения

$$\ddot{a} = m_a \pm 2.5 \cdot \sigma_{\dot{a}}, \tag{3}$$

где m_a — математическое ожидание; σ_a — среднеквадратичное отклонение вертикальных ускорений системы.

Из математической статистики известно, что в указанных пределах будет находиться не менее 98% всех возможных (для данных условий) ускорений. Тогда вертикальные ускорения на переднем и заднем мостах будут равны:

$$\ddot{a}_1 = m_{a_1} \pm 2.5 \, \tilde{G}_{\ddot{a}_1} \, ;$$
 (4)

$$\ddot{a}_2 = m_{a_2} \pm 2.5$$
 (5)

Площади контакта шины с грунтом для переднего и заднего мостов равны:

$$S_{01} = 2\pi \cdot 0.61 R_x \cos \left[\arcsin \left(\frac{R_x - \frac{Z_{1\pi} (1 + \ddot{a}_1)}{C_{uu}}}{R_\kappa} \right) \right];$$
 (6)

$$S_{02} = 2\pi \cdot 0.61 R_x \cos \left[\arcsin \left(\frac{R_K - \frac{Z_{2\pi} (1 + \ddot{a}_2)}{C_{LL}}}{R_L}\right)\right],$$
 (7)

где $C_{\underline{\mathsf{m}}}$ — вертикальная жесткость шины.

Значения m_a и σ_a , входящие в уравнения (4) и (5), определяем по результатам экспериментальных исследований колесного трелевочного трактора [2].

Учитывая, что на мостах трактора установлено по две шины, получаем выражение для удельных давлений под передними и задними колесами трактора:

$$Z_{1y} = \frac{Z_{1\eta}(1+\ddot{a}_1)}{2S_{01}}; \tag{8}$$

$$Z_{2\gamma} = \frac{Z_{2\pi} (1 + i a_2)}{2S_{02}}.$$
 (9)

Тогда разность удельных давлений будет равна

$$P_{y} = \frac{Z_{2y} - Z_{1y}}{Z_{2y}} \cdot 100\%. \tag{10}$$

Известно, что колесная система будет оказывать наименьшее воздействие на путь в том случае, если разность удельных давлений на грунт будет лежать в пределах 20—30%. Исходя из этого условия и будем определять рациональные соотношения между параметрами системы.

Расчетные исследования эффективности использования колесных тракторов выполнены с применением ЭЦВМ "Мир-1". Разработанный алгоритм позволил наряду с определением допустимой рейсовой нагрузки выбирать рациональную скорость движения трактора. Определенным значениям технологической силы соответствуют предельно допустимые скорости движения трактора исходя из следующего условия: $P_{\rm Kp}=3000$, V = 6; $P_{\rm Kp}<3000$, V = 9,75; $P_{\rm Kp}<2800$, V = 1200; $P_{\rm Kp}<2150$, V = 13,2; $P_{\rm Kp}<2100$, V = 17,68; $P_{\rm Kp}<1670$, V = 23,80; $P_{\rm Kp}<1140$, V = 31,5, где V — скорость движения, кМ/ч.

Такая методика дает возможность прогнозировать режим движения тракторов при определении его рейсовой нагрузки. При трелевке комлями вперед (условия движения — дорога грунтовая после дождя, луговина, песок, снежная целина, $f_2 = 0.4$; $f_1 = 0.12$) получены зависимости разности удельных давлений под колесами передней и задней осей трактора. В качестве основного рассмотрено движение по ровной дороге и на подъем (a = 0 и 0.1 рад).

Из рис. 1 видно, что с увеличением веса груза разность удельных давлений (РУ) увеличивается, причем допустимой величине РУ-20—30% соответствует вес груза 30—40 кН. При движении на подъем с α = 0,1 рад величина Q не должна превышать 30 кН.

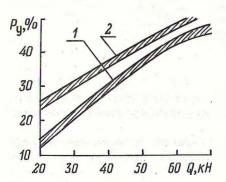


Рис. 1. Зависимость разности удельных давлений (P_y) от веса пачки хлыстов (трелевка в полуподвешенном состоянии, 1-a=0; 2-a=0,1 рад).

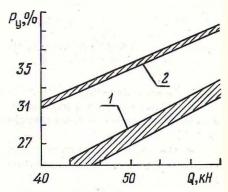


Рис. 2. Зависимость разности у дельных давлений P_y (в %) от веса пачки хлыстов (трелевка вершинами вперед; $1-a=0;\ 2-a=0,1$ рад).

Таким образом, при загрузке трактора до рекомендуемой заводом-изготовителем величины пакета в 45 кН будет происходить разгрузка переднего моста и ухудшение проходимости машины. Одной из мер по улучшению проходимости можно считать трелевку вершинами вперед (рис. 2). В этом случае для равных участков допустимая нагрузка на рейс может быть доведена до 53 кН, а при движении на подъем — 40 кН.

Таблица 1. Зависимость Ру от веса пачки хлыстов для трехосной трелевочной системы

Наименование показателей		Вес пачки хлыстов, кН				
		30	40	50	60	70
P _v ,	a = 0	-2,7	-1,28	0,12	1,47	2,83
у Верхняя граница	a = 0,1	8,16	10,49	12,00	12,49	14,69
v,	a = 0	31,5	31,5	31,5	23,8	23,8
км/ч	a = 0.1	23,8	23,8	17,68	12,9	12,9

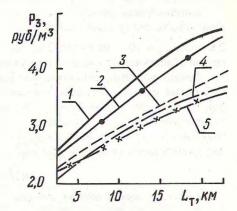


Рис. 3. Зависимость приведенных затрат от расстояния подвозки L_{T} при различных объемах пачки хлыстов: 1-Q=4 м 3 ; 2-5,0; 3-6,2; 4-7,5; 5-Q=8.5 м 3 .

Существенное улучшение эксплуатационных показателей колесного трелевочного трактора будет иметь место при использовании в составе колесной системы одноосного прицепа, на котором смонтирован трелевочный щит. Прицеп агрегатируется с трактором с помощью трехточечной гидравлической навески.

В рассматриваемом случае трактор не несет значительной вертикальной нагрузки от пачки хлыстов и работает в режиме тягача. Результаты расчетов для такой системы сведены в табл. 1.

Как видно из табл. 1, для трехосной трелевочной системы обеспечивается нормальная ее проходимость при $Q \ge 50 \ \mathrm{kH}$ на ровном участке и при $Q = 30-70 \ \mathrm{kH}$ — на подъеме.

В общем случае для нормальной эксплуатации трактора вес пачки может быть в пределах 70—80 кН. Скорость движения агрегата в этом случае будет в пределах 12—23 км/ч.

Оценка эксплуатационных показателей использования колесных тракторов ЛТ-157 может быть проведена и по критерию приведенных затрат. В результате приведенных экспериментальных исследований в Червенском ЛПХ получены зависимости приведенных затрат Π_3 от расстояния подвозки $L_{\overline{1}}$ и объема пачки хлыстов Ω (рис. 3) .

Как видно из рис. 3, с увеличением расстояния подвозки от 5 до 20 км приведенные затраты возрастают. При расстоянии подвозки 5 км наимень-7 Зак. 5837

шие приведенные затраты наблюдаются при $Q = 7,5 \, \text{м}^3$. С дальнейшим увеличением $L_{_T}$ наименьшие значения $\Pi_{_3}$ имеют место при объеме пачки 9,5 м^3 . При $L_{_T} = 20 \, \text{км} \, \Pi_{_3}$ для кривой 5 (рис. 3) меньше, чем для кривой 2 (рис. 3) примерно на 14%.

Анализ результатов исследований позволяет сделать следующие выводы. При работе с серийным технологическим оборудованием вес транспортируемой пачки, по условиям проходимости, не должен превышать 30—40 кН (трелевка комлями вперед).

При трелевке вершинами вперед вес пачки может быть доведен до $55\ \mathrm{kH}.$

При работе трактора с прицепным технологическим оборудованием вес пакета хлыстов может быть доведен до 70—80 кH.

Выполненный расчет показал, что на один трелевочный трактор необходимо иметь следующее количество автомобилей: при $L_T = 5$ км — не менее 3-х; при $L_T = 10$ — не менее 2-х; при $L_T = 10-20$ км — 1 автомобиль. В этом случае обеспечивается вывозка за смену всей древесины.

Таким образом, рациональные режимы работы по такой технологической схеме имеют следующие параметры: при $L_{\rm T}=5-10$ км: число тракторов — 1; число автомобилей — 3; рейсовая нагрузка — 7,5 м³; основная транспортная скорость движения — 12,9 км/ч; при $L_{\rm T}=10-20$ км/ч: число тракторов — 1; число автомобилей — 1; рейсовая нагрузка — 8,5 м³; основная транспортная скорость — 11 км/ч.

ЛИТЕРАТУРА

1. Расчет и проектирование специальных лесных машин/Подобщ. ред С.Ф. Орлова. — Л.: ЛТА им. С.М. Кирова, 1973. — 150 с. 2. Жуков А.В., Рудницкий П.Ф., Симанович В.А. Экспериментальная оценка плавности колесного трелевочного трактора. — В сб.: Механизация лесоразработок и транспорт леса. Минск: Вышэйшая школа, 1979, вып. 8, 45—48.

УДК 539.43

Е.Г. МЕМЕЛОВА, канд.техн.наук, доцент (БТИ), Б.И. АЛЕКСАНДРОВ, канд.техн.наук (ИНДМаш, АН БССР)

ВЛИЯНИЕ РАЗЛИЧНЫХ ВИДОВ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ СТАЛИ ПРИ ОСЕВЫХ ЦИКЛАХ НАГРУЖЕНИЯ

Все более возрастающий объем работ в области лесной промышленности требует применения высокопроизводительной техники, обладающей высокой надежностью и долговечностью.

Использование различных методов упрочняющей технологии при изготовлении деталей механизмов и машин лесозаготовительной промышленности позволяет значительно повысить их срок службы.

Недостаточное количество экспериментальных данных по усталостной прочности при осевых циклах нагружения и отсутствие этих данных для дета-