минск

А. К. БАЕВ

1970

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ КАРБОНИЛА НИКЕЛЯ И ПЕНТАКАРБОНИЛА ЖЕЛЕЗА

Измерение давления пара карбонила никеля проводилось многими исследователями [1—7]. Однако их данные значительно расходятся между собой при низких и повышенных давлениях, совпадая только при 35°.

Хотя большинство сведений получено еще в начале века, когда многие свойства карбонильных соединений не были известны, тем не менее тщательность эксперимента [1—5] позволяет предположить, что существенное отличие их данных от значений давления пара, полученных Андерсоном [6] и Кудрявцевым [7], связаны с особенностями методов исследования тех и других. При расчетах давления пара по методу потока авторы работ [2—5] исходили из предположения о мономерности паров карбонила никеля на основе криоскопического определения его молекулярного веса в растворах бензола. В результате использования статического метода [6, 7] давление пара Ni (CO)₄ выше 35° могло быть несколько завышенным за счет его возможной частичной диссоциации.

При определении по методу потока давления пара Fe(CO)₅ на основании близости теоретического (195,90) молекулярного веса с измеренным в растворе бензола (194—197) также была предположена мономерность его молекул [8—10].

Несмотря на отсутствие сведений относительно характера взаимодействия бензола с Fe(CO)₅ и Ni(CO)₄, можно ожидать, что под воздействием поля молекул бензола возможна повышенная диссоциация сложных молекул карбонильных соединений. Поэтому близость полученных значений молекулярного веса с теоретическим не дает утвердительного ответа на отсутствие димерных молекул, но позволяет предположить, что степень ассоциации в бензоле незначительна.

Учитывая отмеченные особенности, мы сочли необходимым провести измерения давления пара Ni(CO)₄ и Fe(CO)₅ надежным методом, исключающим контакт исследуемого вещества с кислородом или влагой, с одновременным определением плотности пара. Измерение давления пара проводилось тензиметрическим методом с мембранным нуль-манометром.

Для исследований использовался Ni(CO)₄ с содержанием железа в металлическом карбонильном никелевом порошке около 0,001% по металлу. Пентакарбонил железа не содержит следов карбонила никеля.

Для очистки следов влаги карбонильные соединения выдерживались в течение нескольких суток с хлористым кальцием. Затем смеси охлаждались до —18° и отфильтровывались. Из полученного фильтрата отбиралась навеска в предварительно просушенную и заполненную сухим инертным газом ампулу и после охлаждения до —78,5° подсоединялась к мембранной камере с помощью короткого вакуумного шланга. Исходная навеска хранилась в замороженном состоянии. Тщательно обработанная под вакуумом при 100° мембранная камера охлаждалась твердой углекислотой, затем в нее переводился карбонил, создавался вакуум, и камера герметизировалась. Отсутствие металлического налета в местах отпаивания при герметизации мембранной камеры указывает на неизменность взятой навески. Исходное количество вещества уточнялось дополнительным взвешиванием ампулы после его дистилляции.

Мембранный нуль-манометр устанавливался в наполненном водой термостате. Для расширения температурного интервала при изучении пентакарбонила железа дополнительно использовался термостат с воздушной прослойкой. Использование массивного медного блока позволило поддерживать постоянную температуру по всей длине мембранной камеры.

Чтобы избежать воздействия света на Fe(CO)₅, термостат помещался в шкаф, снабженный застекленными и зашторенными окошками для наблюдения за изменением температуры и для оптической системы компенсации давления.

Постоянство температуры в водяном термостате осуществлялось терморегулятором с контактным ртутным термометром, двухпозиционной нагревательной системой и электромешалкой. Постоянство температуры в термостате поддерживалось с точностью ±0,02°. Измерение ее осуществлялось набором ртутных термометров. Давление пара в мембранной камере измерялось монометром МЧР-3 с точностью отсчета

18

Таблица 1

T,°C	Р, мм рт. ст.	T,°C	Р, мм рт. ст.	T,°C	<i>Р</i> , мм рт. ст.
	$\begin{array}{c} 211,0\\ 234,5\\ 302,7\\ 336,9\\ 381,5\\ 448,9\\ 501,0\\ 539,0\\ 538,0\\ 581,8\\ 614,2\\ 623,6\\ 674,8\\ 696,8\\ 703,2\\ 703,8\\ \end{array}$	$15,40 \\18,83 \\22,06 \\28,45 \\30,80 \\32,27 \\32,29 \\33,63 \\34,03 \\34,05 \\35,07 \\35,07 \\35,07 \\35,07 \\35,10 \\36,93 \\39,62 \\42,60 \\42,60 \\42,60 \\$	264,1306,4453,1495,4523,1524,3551,0559,0559,0559,0559,4562,3562,3562,3562,3562,6566,6573,3579,2	11,9512,1215,3721,5721,5721,6227,8032,8034,1835,6037,5338,7039,1239,7241,0842,6046,0048,6050,1055,0060,30	$\begin{array}{c} 228,8\\ 231,0\\ 266,9\\ 346,1\\ 345,5\\ 444,0\\ 538,2\\ 565,1\\ 597,8\\ 639,9\\ 667,2\\ 669,3\\ 674,4\\ 674,9\\ 681,4\\ 690,1\\ 697,6\\ 702,6\\ 717,6\\ 733,3\end{array}$

Давление пара карбонила никеля

 $\pm 0,1$ мм рт. ст. в широком диапазоне давлений на подъеме и спуске температуры. Результаты измерения давления пара приведены на рис. 1 и в табл. 1, 2.

Полученные значения давления пара укладываются на логарифмическую прямую, и их возможный разброс не превышает 1 мм рт. ст. при общем давлении в мембранной камере 10—700 мм рт. ст. Из рис. 1 слеДавление пара пентакарбонила железа

Таблица 2

Давление нара нентакароонила железа							
T,°C	<i>Р</i> , мм рт. ст.	T,°C	Р, мм рт. ст.	T,°C	Р, мм рт. ст.		
7,30	5,2	78,90	319,3	93,70	349,8		
5,70	11,6	79,17	324,6	94,40	350,2		
12,60	16.4	79,30	323,7	94,60	350, 4		
15,30	17.1	79,56	328,6	94,97	351.4		
16.30	17.1	79.87	330,9	96,80	353,5		
19,10	23,0	79,90	331,6	96,90	353,2		
23,50	26,9	79,05	332,0	97,00	353,3		
25,30	31,5	80,20	333,6	98,90	355,4		
30,10	41,3	80,30	333,6	101,00	357,9		
31,10	42,9	80,35	334,0	101,30	358,5		
38,90	62,6	80,40	333,8	110,40	366,7		
42,50	73,2	80,70	335,9	111,50	368,5		
45,70	86,0	81,36	337,0	112,90	369,7		
52,90	117,0	81,63	337,3	114,20	371,0		
55,50	126,8	82,32	338,5	117,90	375,8		
57,60	139,5	83,00	338,7	118,30	376,5		
02,00	109,0	83,90	339,5	121,60	381,4		
68 90	192,6	84,22	339,9	124,85	386,6		
70,10	222,0	86,50	342,3	129,03	392,5		
70,10	233,3	91,20	346,6	131,43	397,4		
75,10	200,3	91,53	347,6	132,10	415,5		
70,03	292,0	91,65	347,6	140,00	430,5		
71,40	300,3	92,60	348,4	140,70	448,1		
18,11	320,7	92,90	348,9	141,50	481.5		

дует, что измеренные нами давления пара Ni(CO)₄ хорошо согласуются с данными Кудрявцева [7] и Андерсона (установленными статическим методом) [6] и значительно отличаются от полученных с помощью динамического метода данных Дьюара, Джонса [2] и Монда, Митташа [3—5].

Рис. 1. Зависимость 1g P мм рт. ст. = $f\left(\frac{1000}{T \, {}^{\circ}K}\right)$ для карбонила никеля по данным: / — нашим; 2 — Кудрявцева; 3 — Дьюара и Джонса; 4 — Монда и Назими; 5 — Андерсова.

Как следует из рис. 2, значения давления пара Fe(CO)₅, полученные Дьюаром и Джонсом [2] статическим методом, значительно выше (термодинамические характеристики испарения ниже) соответствующих данных Эйбера [11] и Бадштюбнера [12, 13], а также и наших. Вероятно, это связано с присутствием в исходном пентакарбониле железа более легколетучего карбонила никеля.

Основываясь на зависимости

$$\lg P = f\left(\frac{1}{T}\right),$$

мы рассчитали термодинамические характеристики процесса испарения Ni(CO)₄ и Fe(CO)₅.

Высокая точность установленных значений давлений пара и большое их число позволяют при установлении погрешности использовать разброс экспериментальных данных от линейной зависимости

$$\lg P = f\left(\frac{1}{T}\right) \,.$$

Погрешность ΔH_T° и ΔS_T° испарения Ni(CO)₄ для каждого опыта соответственно не превышала 0,05 ккал и 0,15 ед. эн., для Fe(CO)₅ — 0,10 ккал и 0,30 ед. эн. (табл. 3).

При изучении карбонила никеля проведено 8 серий опытов и два

опыта с пентакарбонилом железа. Давления пара измерялись через 1,5— 3° соответственно в интервале температур 4—43° и — 7— + 80°.

Средние значения термодинамических характеристик испарения карбонила никеля с учетом среднеарифметической погрешности равны $\Delta H_T^{\circ} = 7,12+0,03$ ккал/моль и $\Delta S_T^{\circ} = 22,63\pm0,13$ ед. эн. Температура кипения $42,30\pm0,05$.

Таблица 3

Энтальпии и энтропии испарения карбонила никеля

Температурный интервал (С°)	∆Н ₂₉₈ , ккал/моль	∆S [°] _{2⊎в} , ед. эн.
	Карбонил никел	ГЯ
11,8-344,4-2414,8-3615,8-24,215,23-348,8-4015,4-3412,0-39	$7,12 \pm 0,05 7,18 \pm 0,05 7,09 \pm 0,05 7,13 \pm 0,05 7,16 \pm 0,05 7,09 \pm 0,05 7,06 \pm 0,05 7,12 \pm 0,05 $	$\begin{array}{c} 22,96\pm0,15\\ 22,81\pm0,15\\ 22,50\pm0,15\\ 22,62\pm0,15\\ 22,68\pm0,15\\ 22,68\pm0,15\\ 22,47\pm0,15\\ 22,38\pm0,15\\ 22,63\pm0,15\\ 22,63\pm0,15\\ \end{array}$

Пентакарбонил железа

8-53	$9,42\pm0,10$	$25,13\pm0,30$
952 852	$9,26\pm0,10$ $9,38\pm0,10$	$24,60\pm0,30$ $24,90\pm0.33$
-7-+80	$9,21 \pm 0,10$	$24,44 \pm 0,30$

Полученные нами термодинамические характеристики лучше соответствуют данным [6,14—16,18] и расходятся со значениями, установленными по методу потока [2, 4, 15], прямым определением [17] и расчетным способом [19].

Установленные нами значения $\Delta H_T^{\circ} = 9,33 + 0,08$ ккал/моль и $\Delta S_T^{\circ} = 24,82 + 0,25$ ед. эн. для испарения пентакарбонила железа примерно на 1,5 ккал отличаются от данных [22—24] и хорошо согласуются с данными [11—13, 25—28]; найденная экстраполяцией $T_{\text{кип.}} = 104,73 + +0,10^{\circ}$. Давления пара Ni (CO)₄ и Fe (CO)₅ описываются уравнениями:

Ni(CO)₄lg
$$P_{\text{MM pt. cr.}} = -\frac{1555,4}{T^{\circ}K} + 7,8123 \ 4 - 42^{\circ};$$
 (1)

$$\operatorname{Fe}(\operatorname{CO})_{5} \lg P_{\text{MM pt. ct.}} = - \frac{2010,7}{T^{\circ}K} + 8,2238 \ 7 - + 80^{\circ}. \tag{2}$$

По данным Андерсона [6] мы рассчитали термодинамические характеристики процесса сублимации и плавления карбонила никеля. Так как давление пара над твердым Ni (CO)₄ измерено со значительной погрешностью, при расчете ΔH_T° и ΔS_T° сублимации использована уточненная температура плавления (22,29°) [1]. Полученные значения соответственно равны: $\Delta H_{суб\pi} = 9,11$ ккал/моль, $\Delta S_{суб\pi} = 30,64$ ед. эн., $\Delta H_{пл}^\circ = 2,17$ ккал/моль, $\Delta S_{пл} = 8,67$ ед. эн. Значение теплоты плавления на 1,1 ккал ниже, чем в работе [14]. Белозерский [1] приводит величину 9,55 ккал, которую можно получить из данных Андерсона [6] по графику зависимости

$$\lg P = f\left(\frac{1}{T^\circ}\right)$$

при максимальном разбросе значений давления пара (рис. 1). Однако и в этом случае свободная энергия плавления совпадает с величиной, вычисленной из уравнения

$$\Delta Z_{-\pi}^{\circ} = 2170 - 8,76 \cdot 250,86.$$

Согласно Митташу [22], теплота плавления пентакарбонила железа равна 3,25 ккал, что на 1 ккал выше теплоты плавления карбонила никеля. Это указывает на более существенное преобразование кристаллической структуры при плавлении у Fe(CO)₅ по сравнению с Ni(CO)₄. Тем не менее низкое значение удельной электропроводности карбонилов железа и никеля [1—3] свидетельствует о незначительной степени электролитической диссоциации в расплаве и характеризует их как молекулярные жидкости.

Из совокупности данных по $\Delta H_{\text{пл}}$ $T_{\text{пл}}$ =19,50° [1] пентакарбонила железа и зависимости

$$\Delta S_{\Pi\pi}^{\circ} = \frac{\Delta H_{\Pi\pi}}{T_{\Pi\pi}^{\circ}K}$$

мы рассчитали энтропию плавления $Fe(CO)_5$, равную 12,8 ед. эн. Идентичность абсорбционных спектров чистого карбонила железа и его растворов с различными органическими растворителями [17, 18] указывают на неизменность структуры жидкого $Fe(CO)_5$ независимо от растворителя и, следовательно, измеренные значения его молекулярного веса по понижению температуры замерзания бензола [8—10] близки к истинным величинам. Близость молекулярного веса (194—197) к теоретическому (195,90) также указывает на молекулярную структуру расплава, в которой находятся в равновесии мономерные, димерные молекулы и ассоциированные молекулярные группировки. Значение теплоты испарения (9,33 ккал) указывает на ваандервальсовское взаимодействие в расплаве.

Малое отличие установленного молекулярного веса у карбонила никеля (176,05) от теоретического (170,90) указывает на сравнительно низкую степень ассоциации и малую концентрацию в растворе ассоциированных молекул, что находится в соответствии с данными по изменению поверхностного натяжения карбонила никеля [1].

На рис. 3, 4 представлена зависимость $P_{\text{MM рт. ст.}} = f(T^{\circ})$ для насыщенного и ненасыщенного пара карбонила никеля и железа.

Данные получены на подъеме и спуске температуры. Из рисунков следует, что после перехода всего карбонила никеля в пар экспоненциальный рост кривой (1) давления пара сменяется участком (3), на котором происходит постепенное возрастание давления пара по сравнению с линией (участок 2), отвечающей газовому расширению.

Нами установлено, что давление окиси углерода в системе в 20— 30 мм рт. ст. замедляет диссоциацию карбонила никеля по схеме

$$(Ni(CO)_4)_{ra3} = [Ni]_{TB} + 4(CO)_{ra3}.$$
 (4)

Тем не менее в ненасыщенном паре остается развитым процесс с увеличением числа газовых молей.

Представленные на рис. З данные отвечают давлению пара карбонила никеля без давления окиси углерода.

Рис. 3. Изменение давления пара карбонила никеля в температурной последовательности.

Для выяснения растворимости окиси углерода в Ni(CO)₄ проводились независимые опыты по определению давления пара над чистым веществом и в присутствии окиси углерода. За вычетом $P_{\rm CO}$ в пределах отмеченной погрешности в обеих сериях опыта давления пара Ni(CO)₄ практически не отмечаются, что можно объяснить отсутствием или крайне незначительной растворимостью окиси углерода. В процессе исследования в пределах погрешности опыта не было замечено растворения окиси углерода в карбониле никеля вплоть до температур 60—65° и $P_{\rm CO} \approx 100$ мм рт. ст. Измерение давления пара пентакарбонила железа на подъеме и спуске температур в интервале 4—115° также приводит к хорошему совпадению их, а последующее охлаждение мембранной камеры твердой углекислотой указывает на отсутствие окиси углерода. Поэтому возрастающее давление пара в ненасыщенном состоянии по сравнению с его температурным расширением, вероятно, является результатом дис-

Рис. 4. Изменение давления пара пентакарбонила железа в температурной последовательности.

социации в паре ассоциированных молекул. С этой целью в рамках мембранного метода проведено определение плотности пара и среднего молекулярного веса (табл. 4).

	Плотность	пара и ср	едний мој	текулярный ве	ес карбонила	нике.	ля
Объем ембранной камеры, см ³	Навеска карбонила никеля	Полное испарение при <i>Т</i> ,°С	Р общ. мм рт. ст.	Плотность, г/см ^з	M _{cp}	<i>T</i> ,°C	M _{cp}
		1	Карбон	ил никеля			
98,80 95,95 57,10	0,3635 0,4967 0,3508	24,08 34,00 38,77	381,1 558,9 668,5	0,00368 0,00501 0,00611	178,9 177,4 179,0	$\begin{array}{c} 8\\14\\20\end{array}$	169,8* 170,7* 171,6*
		Пен	такарб	онил жел	еза		
94,10 96,22	0,1033 0,2883	52,96 80,35	113,0	0,00110	$197,57 \pm 197,06 \pm 197,06 \pm 100$	78 100	$200,6\pm0,7^{**}$ 197.9+1.6**

22 0,2883 80,35 335,2 0,00300 1

* Расчеты проведены по данным [20] с учетом табл. 1.

** Рассчитаны по плотности пара из [8-10].

Полученные нами значения плотности пара карбонила никеля несколько выше данных Хибера [20].

Так как диссоциация карбонила никеля по схеме (4) осуществляется лишь вблизи его температуры кипения, то, вероятно, значительное занижение среднего молекулярного веса по сравнению с теоретическим с учетом данных Хибера связано с большой погрешностью определения плотности пара в работе [20]. Суммарная погрешность определения сред-

Таблица 4

него молекулярного веса не превышает сотых долей процента, что вытекает из погрешности измерения температуры, давления, объема мембранной камеры и навески вещества.

Для карбонила никеля она не превышает единицы, для Fe(CO)₅ изменяется в пределах 1,0—1,7. Поэтому завышение теоретического молекулярного веса у Ni(CO)₄ (170,69) на 7—8,5 единиц указывает на существование в паре полимерных молекул.

Монд и Назини при криоскопическом определении молекулярного веса Ni(CO)₄ в бензоле нашли величину, близкую к установленной нами и соответственно равную 176,5 [4, 5].

Наличие в парах карбонила никеля полимерных молекул, не учитываемых в методе потока [2—5], объясняет завышение давления пара по сравнению с соответствующими значениями, полученными мембранным методом [6, 7] (рис. 1*a*), и указывает на протекание в ненасыщенном наре диссоциации более сложной формы молекулы:

$$(Ni(CO)_4)_{2ra3} = 2(Ni(CO)_4)_{ra3}.$$
 (5)

Следует также отметить, что полученные значения $M_{\rm cp}$ пентакарбонила железа хорошо согласуются с данными других авторов [8—10]. Хотя значения $M_{\rm cp}$ получены с высокой точностью, числовые значения (197,1 и 200,6 [27]) находятся в пределах погрешности эксперимента.

Учитывая совокупность данных и полимеризацию у карбонила никеля, мы предполагаем существование полимеризации также у пентакарбонила железа, у которого, по-видимому, парциальное давление димерной формы должно возрастать с повышением общего давления пара.

Принимая, что в парах преимущественно присутствуют мономерные и димерные формы молекул, и пренебрегая незначительным парциальным давлением возможных более сложных молекул, можем записать следующую систему уравнений:

$$P_{\rm obill} = P_{\rm moll} + P_{\rm gam}, \tag{6}$$

$$P_{\text{общ}} \cdot M_{\text{ср}} = P_{\text{мон}} \cdot M_{\text{мон}} + P_{\text{дим}} \cdot M_{\text{дим}}, \qquad (7)$$

где $P_{\text{мон}}, P_{\text{дим}}$ и $M_{\text{мон}}, N_{\text{дим}}$ — соответственно парциальные давления и молекулярные веса мономерной и димерной формы молекул; $P_{\text{общ}}$ и $M_{\text{ср}}$ полученные в эксперименте значения общего давления пара и среднего молекулярного веса.

Решая совместно уравнения (1) и (2), находим:

$$P_{\text{MOH}} = P_{\text{ofill}} \left(2 - \frac{M_{\text{cp}}}{M_{\text{MOH}}} \right), \tag{8}$$

$$P_{\text{дим}} = P_{\text{общ}} \left(\frac{M_{\text{ср}}}{M_{\text{мон}}} - 1 \right).$$
(9)

Вычисленные значения парциальных давлений приведены в табл. 5. Найденные значения $\Delta H_{\rm T}^{\circ}$ и $\Delta S_{\rm T}^{\circ}$ испарения мономера и димера карбонила никеля для интервала температур 24—39° соответственно равны 7,12±0,05 ккал/моль, 22,4±0,20 ед. эн. и 17,4±3,5 ккал/моль, 43,4± ±7 ед. эн.

Таблица 5

Давление пара мономера и димера карбонила никеля и константы диссоциации димерной формы

T, ℃	Рмон	Рдим	$\kappa_p = \frac{P_{\text{дим}}^2}{P_{\text{дим}} \cdot 760}$
	1 MM p1.		
	Карбо	нил нике	еля
24,08 34,00 38,77	362,7 536,8 635,8	18,4 22,1 32,7	9,385 17,140 16,240
	Пентакар	бонил ж	елеза
52,96 80,35	112,0 333,1	1,0 2,1	15,06 69,52

Парциальные давления пара мономера и димера, использованные для расчета константы равновесия процесса (5), приведены в табл. 5. По наклону и положению прямой на графике зависимости

$$\lg K_{\rm p} = f\left(\frac{1000}{T^{\circ}K}\right)$$

вычислены энтальпии и энтропии процесса диссоциации димера карбонила никеля по схеме (5), равные: $\Delta H_T^\circ = 8,6\pm 2$ ккал/моль и $\Delta S_T^\circ = = 33.5\pm 5$ ед. эн.

Как следует из табл. 5, парциальное значение димера пентакарбонила незначительно. Именно с этим связан тот факт, что при общем давлении насыщенного пара 113 мм рт. ст. изменение давления в области ненасыщенного пара подчиняется простому газовому расширению. При давлении насыщенного пара 335 мм рт. ст. в ненасыщенной области давление изменяется по различному закону.

В интервале температур 80—115° происходит возрастание давления по сравнению с его изменением по закону газового расширения, что является следствием протекания процесса с увеличением числа газовых молей.

Согласно данным [8—10], разложение пентакарбонила железа выше 56° не происходит, независимо от интенсивности и продолжительности облучения, и поэтому не установлено появление девятикарбонила. Отложение железа замечено лишь выше 140° [8—10]. В нашем случае в интервале 80—115° в течение 24—36 час. не наблюдалось изменения давления пара при постоянстве температуры, в системе отсутствовала окись углерода, что устанавливалось вымораживанием пентакарбонила железа твердой углекислотой. Все это указывает на осуществление на участках 2—3 процесса

$$(Fe_2(CO)_{10})_{ra3} = 2(Fe(CO)_5)_{ra3}.$$
 (10)

Появление в системе окиси углерода имело место лишь выше 115° (участок 4). Приближение давления пара (участок 3) к линии, отвечающей газовому расширению, указывает на низкое значение парциального давления пара димерной формы на этом отрезке кривой.

11 Зак. 1475.

Последующее резкое возрастание давления пара (выше 115°) и отложение на стенках мембранной камеры металлического железа указывает на осуществление глубокой диссоциации пентакарбонила железа:

$$(Fe(CO)_{5ra3} = [Fe] + 5(CO)_{ra3}.$$
(11)

Изучение ненасыщенного пара карбонила никеля и пентакарбонила железа позволило провести расчет парциальных давлений мономера и димера для более высоких температур.

Парциальное давление окиси углерода, образующейся в системе при температуре выше температуры кипения Ni(CO)₄, в результате его частичной диссоциации по схеме (1) устанавливалось вымораживанием всего карбонила никеля до температуры —78,5°.

Повторное нагревание с длительным выдерживанием всей системы при первоначальной температуре опыта не приводило к заметному изменению давления окиси углерода.

Парциальные давления мономера и димера устанавливались по уравнениям (8, 9), а также решением уравнения (6) совместно с уравнением (12):

$$\left[\frac{m \cdot R \cdot T}{M_{\text{MOH}} \cdot V}\right] = P_{\text{MOH}} + 2P_{\text{RHM}}.$$
(12)

Установленные величины находятся в хорошем соответствии.

Вычисленные значения $P_{\text{мов}}$ и $P_{\text{дим}}$ карбонила никеля для двух различных исходных навосок (рис. 2), использованные для расчета констант равновесия процесса (5), приведены в табл. 6 и на рис. 5.

Как видно из этого рисунка, вычисленные значения констант равновесия процесса (5) описываются двумя логарифмическими прямыми, что связано с погрешностью измерения среднего молекулярного веса и, сле-

Таблица б

Парциальные давления мономера и димера карбонила никеля и константы диссоциации $(Ni_2(CO)_8)_{nap} = 2(Ni(CO)_4)_{nap}$

<i>T</i> , °C	Робщ	Р мон	ГР _{днм}	$K_p = \frac{P_{\text{MOH}}^2}{P_{\text{MUM}} \cdot 760}$
	1	мм рт. ст,		1
35,07 35,10 36,93 39,62 42,60 46,45 50,10 55,00 60,00	562,3 562,6 566,6 573,3 579,2 582,3 588,8 588,8 597,9 607,4	541,3 540,8 546,2 554,5 560,5 564,7 574,2 583,8 594,4	21,0 21,8 20,4 18,8 18,7 17,6 14,6 14,1 13,0	18,35917,65219,24221,51922,10523,84029,71431,80535,760
39,51 40,72 41,08 42,60 46,00 48,60 50,10 55,00	670,8 674,4 674,9 679,5 688,2 694,2 697,9 710,5	638,9 643,3 644,0 650,1 661,7 668,8 671,6 686,6	31,9 31,1 30,9 29,4 26,5 26,1 26,3 23,9	$16,837 \\17,509 \\17,660 \\18,915 \\21,740 \\22,550 \\22,566 \\25,954$

довательно, парциального давления димера и мономера карбонила никеля при его различном общем давлении пара и исходной навеске.

Результаты расчета всех составляющих газовую фазу в ненасыщенном состоянии у пентакарбонила железа и констант равновесия процесса (10) приведены в табл. 7.

Таблица 7

Парциальное	давление	мономера	И	димера	пентакарбонила	железа	И
		константы	д	иссоциац	ции		
	(F	e ₂ (CO) ₅) _{nab}	_	2(Fe(CC)) ₅) _{Пар}		

T, °C	Робщ	Р _{дим}]	Р мон	$K_p = \frac{P_{\text{MOH}}^2}{P_{\text{mus}} \cdot 760}$
		мм рт. ст.		Длм
01.06		9 5	224 5	58 80
81,30	337,0	2,0	224,0	50,00
81,63	337,3	2,5	334,8	59,00
82, 32	338,5	2,5	336,0	59,42
83,00	338,7	2,4	336, 2	61,97
83,90	339,5	2,4	337,0	62,26
84.22	339.9	2,3	337,7	65,24
86 50	342.3	2.1	340.2	72,51
91 20	346 6	$\frac{1}{2}$ 1	344.5	74,36
91,55	347 6	19	345 7	82 76
01,65	347 6	1 9	345 7	82 76
01.65	247 6	1 0	345 7	82 76
91,00	347,0	1,5	040,1	97 99
92,60	348,4	1,0	340,0	07,02
92,90	348,9	1,8	347,1	88,07
93 ,70	349,8	1,7	348,0	91,58
94,40	350,2	1,7	348,4	91,56
94,60	350.4	1,7	348,6	91,57
94.97	351.4	1,5	349,9	107,59
101 00	357.9	3.5*	357.9	
101,30	358 5	3.5*	358.5	

* P = 3,5 мм рт. ст.

На рис. 6 в виде зависимости

$$\lg K_{\rm p} = f\left(\frac{1000}{T^{\rm o}\rm K}\right)$$

представлены вычисленные значения констант равновесия процесса (10) по определению среднего молекулярного веса (см. табл. 5) и изучению

157

11*

ненасыщенного пара. Из рисунка следует, что они удовлетворительно ложатся на одну прямую.

По положению логарифмической прямой на рис. 6 рассчитаны термодинамические характеристики диссоциации димера пентакарбонила железа на мономер, равные соответственно

$$\Delta H^\circ_{r}=9,1\pm0,5$$
ккал/моль и

$$\Delta S^{\circ}_{\tau} = 32,8 \pm 1,0$$
ед. эн.

Установленная величина энтропии соответствует возрастанию энтропии для процессов, протекающих с увеличением числа газовых молей.

бонила железа на мономер,

Из средних значений констант равновесия реакции (10) определены парциальные давления пара димера и мономера пентакарбонила железа, приведенные в табл. 8.

Они хорошо описываются уравнениями:

мономер lg
$$P_{\text{mm pt. ct}} = -\frac{2007,9}{T^{\circ}\text{K}} + 8,2145,$$

димер lg $P_{\text{mm pt. ct}} = -\frac{2435,2}{T^{\circ}\text{K}} + 7,2422.$

Термодинамические характеристики испарения мономера, димера, диссоциации последнего представлены в табл. 9. Полученные по различным исходным данным ΔH_T° , и ΔS_T° , процесса (2) в пределах погрешности опыта хорошо согласуются между собой. Из полученных термоди-

Таблица 8

Давление пара димера и мономера пентакарбонила железа

7.90	Робщ	Рмон	Рдим
10		мм рт. ст.	
50	100.0	99.2	0.8
60	155,2	154,0	1,2
70	232,3	230,4	1,9
80	335,6	332,9	2,8
90	487,5	483,6	3,9
100	690,2	684,7	5.5
110	949.5	941.9	7.6

намических характеристик следует, что они находятся в хорошем соответствии между собой и для интервала $34-60^{\circ}$. Средние значения ΔH_T и ΔS_T для диссоциации димера равны $5,70\pm40$ ккал/моль и $24,25\pm\pm1,0$ ед. эн. Низкое содержание в паре димерной формы пентакарбо-

Таблица 9

Термодинамические характеристики сублимации, испарения, плавления и диссоциации карбонила никеля и пентакарбонила железа

Процесс	Температурный интервал	${}^{\diamond} H_{T}^{\circ}$, ккал/моль	∆ S _T , ед. эн.
$[Ni(CO)_4]_{TB} = (Ni(CO)_4)^*_{Pa3}$ $[Ni(CO)_4]_{TB} = \{Ni(CO)_4\}_{\mathcal{K}}$	3520 	9,11 2,17	30,64 8,67
$ \{ Ni(CO)_4 \}_{3K} =: (Ni(CO)_4)_{ra3} \\ \{ Ni(CO)_4 \}_{3K} =: (Ni_2(CO)_4)_{ra3} \\ 2 \{ Ni(CO)_4 \}_{3K} =: (Ni_2(CO)_8)_{ra3} \\ (Ni_2(CO)_8)_{ra3} =: 2(Ni(CO)_4)_{ra3} \\ (Ni_2(CO)_8)_{ra3} =: 2(Ni(CO)_4)_{ra3} \\ (Ni_2(CO)_8)_{ra3} =: 2(Ni(CO)_4)_{ra3} \\ (Ni_2(CO)_8)_{ra3} =: 2(Ni(CO)_4)_{ra3} $	$\begin{array}{r} 4-42\\ 24-39\\ 24-39\\ 24-39\\ 34-60\\ 39-55\end{array}$	$7,127,12\pm 0,0517,4\pm 3,58,6\pm 25,55\pm 0,405,85\pm 0,40$	$\begin{array}{c} 22,63\\ 22,36\pm0,20\\ 43,4\pm7\\ 33,5\pm5\\ 23,9\pm1,0\\ 24,4\pm1,0\\ \end{array}$
$[Fe(CO)_{5}]_{TB} = (Fe(CO)_{5})_{ra3}^{ra3}$ $[Fe(CO)_{5}]_{TB} = \{Fe(CO)_{5}\}_{3K}$ $\{Fe(CO)_{5}\}_{3K} = (Fe(CO)_{5})_{ra3}$ $\{Fe(CO)_{5}\}_{3K} = (Fe_{2}(CO)_{10})_{ra3}$ $(Fe_{2}(CO)_{10})_{ra3} = 2(Fe(CO)_{5})_{ra3}$	$ \begin{array}{r} 12 \\ -7 \\ 50 \\ 50 \\ 50 \\ 100 \\ 50 \\ 100 \\ 50 \\ 100 \\ \end{array} $	$\begin{array}{c} 12,58\\ 3,25\\ 9,33\pm 0,10\\ 9,04\pm 0,10\\ 18,56\pm 0,5\\ 9,1\ \pm 0,5 \end{array}$	$\begin{array}{c} 37,60\\12,8\\24,82\pm0,20\\23,92\pm0,20\\30,20\pm1,0\\32,8\\pm1,0\end{array}$

* Значения соответствуют суммарному процессу.

нила железа (см. табл. 6, 7) фактически не приводит к различию энтальпии и энтропии суммарного процесса испарения и испарения мономера. Примерно двухкратное повышение ΔH_T диссоциации над ΔH_T испарения соответственно димера карбонила никеля и пентакарбонила железа при сохранении неравенства

$$\Delta H^\circ_{T^{\mathrm{HCII. MOH}}} < \Delta H^\circ_{T^{\mathrm{HCII. ДИМ}}}$$

A. K. BAEB

и при условии близости энтропии обусловливает неустойчивость димерной молекулы. Это объясняет малое парциальное давление димерной формы по сравнению с мономерной, что в свою очередь приводит к незначительному повышению суммарного давления процесса испарения.

Выводы

1. Статическим методом с мембранным нуль-манометром измерено давление пара карбонила никеля и пентакарбонила железа в интервалах 4-39° и -7-80°. Установлены значения среднего молекулярного веса.

2. На основании завышения среднего молекулярного веса по сравнению с теоретическим высказано предположение о существовании в газовой фазе димерных форм карбонила никеля и пентакарбонила железа.

3. По экспериментальным данным вычислены парциальные давления мономера и димера и рассчитаны термодинамические характеристики для суммарного процесса испарения, испарения мономера и димера и процессов:

 $(Ni_2(CO)_8)_{ra3} = 2(Ni(CO)_4)_{ra3},$

$$(Fe_2(CO)_{10})_{ra3} = 2(Fe(CO)_5)_{ra3}.$$

Литература

III Тература
[1] Н. А. Белозерский. Карбонилы металлов. М. 1958. [2] J. Dewar, H. O. Jones.
Proc. Rog. Soc. London, A 71, 427 (1903); A 76, 558 (1905). [3] A. Mittash. Z. Phys.
Chem., 40, 1 (1902). [4] L. Mond, R. Nazini. Z. Phys. Chem., 8, 150 (1891). [5[L. Mond, R. Nazini. Rend Lincei, 7, 411 (1891). [6] J. A. Anderson. J. Chem., Soc., 129, 1653 (1930); 135, 1283 (1936). [7] Б. Б. Кудрявцев. Тр. МХТИ, 9, 22 (1947). [8] J. Dewar, H. O. Jones.
Chem. News., 96, 75, (1907). [9] J. Dewar, H. O. Jones. Proc. Rog. Soc., 76, 558 (1905); 79, 66 (1907). [10] J. Dewar, H. O. Jones. J. Chem. Soc., 97/98, 1226 (1900). [11] G. Eyber.
Z. phus. Chem., A., 144, 1 (1929). [12] M. Trautz. Z. anorg. Chem., 104, 169 (1918).
[13] M. Trautz, W. Badstubner. Z. Elektrochem., 35, 799 (1929). [14] K. K. Kelley. Bur.
Mines. Bull., 383 (1935). [15] W. Hieber, A. Worner. Z. Elektrochem., 40, 287 (1934).
[16] B. Saginuma, J. K. Satodzaki, Bull. Phys. Chem. Res. (Токуо), 21, 432 (1942).
[17] Wallis. Begnok cm. no H. A. Белозерскому. Карбонилы металлов. М., 1951.
(18] Э. В. Брицке, А. Ф. Капустинский. Термические константы неорганических веществ.
М., 1949. [19] А. Кипнис. ЖНХ, 7, в. 7, 1500 (1962). [20] W. Hieber, F. Seel, H. Schneicher. Chem. Ber., 85, 647 (1962). [21] Г. И. Новиков. Докт. дисс. Л., ЛГУ, 1965. [22] Н. Міttasch. Angew. Chem., 41, 827 (1928). [23] J. H. Gladstone. Chem. News., 67, 94 (1893). [24] J. H. Gladstone. Phill. Mag., 35, 204 (1893). [25] W. Hieber, A. Woerner.
Z. Elektrochem., 40, 287 (1934). [26] W. A. Roth. Z. Angew. chem., 42, 981 (1929).
[27] W. A. Roth. Doepke. Archiv. Eisenhattenw., 3, 5 (1929). [28] K. K. Kelley. Bur. Mines. Bull., 383 (1935). [29] A. J. Leadbetter, J. E. Spice. An. J. Chem., 37, 1923 (1959).
[30] J. Drechsler. Z. Elektrochem, 34, 320 (1928). [31] C. A. Шукарев, Г. И. Новиков, A. B. Cysopos, A. K. Баев. ЖНХ, 3, 12, 2630 (1958).