В. В. ДЕМЬЯНЧУК

ТЕРМОДИНАМИЧЕСКОЕ ИЗУЧЕНИЕ КАРБОНИЛА МАРГАНЦА

Согласно литературным данным [1], карбонил марганца плавится при 154—155° и начинает разлагаться выше 110° с образованием металлической поверхности и окиси углерода:

$$(Mn_2(CO)_{10})_{ra3} = 2[Mn]_{rB} + 10(CO)_{ra3}.$$

Гуд с сотрудниками [2] методом сжигания установил теплоту образования карбонила марганца. Масс-спектрометрическое изучение [3] показало наличие осколков $\mathrm{Mn_2(CO)}_7^+$, $\mathrm{Mn_2(CO)}_6^+$, $\mathrm{Mn_2(CO)}_5^+$, $\mathrm{Mn(CO)}_5^+$, $\mathrm{Mn(CO)}_2^+$, что послужило основанием для установления структуры молекулы карбонила марганца [1]. Сведения по летучести ограничиваются качественным указанием на то, что $\mathrm{Mn_2(CO)}_{10}$ сублимирует в токе окиси углерода [1]. Отсутствие термодинамических характеристик фазовых превращений исключает рассмотрение их у карбонильных соединений одной группы и периода. В этой связи особый интерес представляет карбонил марганца [3], поэтому мы предприняли попытки его термодинамического изучения.

Измерение давления пара проводилось статическим методом с мембранным нульманометром [4—5]. Постоянство температуры в термостате не превышало \pm 0,1°, давление пара фиксировалось ртутным манометром с точностью отсчета \pm 0,2 мм рт. ст. Для выравнивания температуры по всей длине мембранной камеры использовался массивный медный блок.

Для исследования взят дважды перегнанный карбонил марганца с соотношением Mn: CO=1:5. Золотисто-желтые кристаллы имели однородную окраску и полностью сублимировались в вакууме. Измерение давления пара осуществлялось на подъеме и спуске температуры. Как показали исследования, карбонил марганца частично разлагается выше 100°, что находится в соответствии с данными [1]. Повышение температуры приводит к возрастанию скорости разложения, однако с увеличением давления окиси углерода последняя тормозит процесс разложения.

Поэтому все последующие исследования проводились в присут-

ствии окиси углерода при $P \le 150 - 200$ мм рт. ст.

Исходное давление окиси углерода устанавливалось перед опытом и после его окончания. При исследовании рассматривались только те серии опытов, в которых имелось совпадение давления окиси углерода и зависимости $P = f(T^{\circ})$ при нагревании и охлаждении.

Тем не менее нам не представилось возможным установить состав

пара, плотность и средний молекулярный вес карбонила марганца.

Результаты исследования за вычетом окиси углерода для трех серий опытов приведены в табл. 1. (Всего было проведено шесть серий

Давление пара карбонила марганца

Таблица 1

<i>T</i> , °C	Р, мм рт. ст.	T, °C	Р, мм рт. ст.	T, °C	Р, мм рт. ст.
90,6 98,7 100,6 110,5 114,8 117,7 125,0 130,3 137,5 145,0 148,5 156,5 158,9 161,8 163,2 166,7 169,0 170,7 172,5 174,7 178,0 181,0 182,7	2,7 1,3 3,3 3,9 6,6 6,6 11,9 15,3 21,9 29,8 32,7 45,9 45,5 60,3 66,0 72,5 79,5 84,9 92,2 103,1 112,8 124,9 130,9	91 100,4 121,0 126,1 131,8 136,0 140,2 145,8 153,2 155,4 161,8 164,0 172,5 176,7 180,8 184,1 185,1	3,3 3,8 8,5 13,4 17,5 21,1 25,6 32,9 41,0 49,3 59,3 65,0 76,6 90,9 105,0 120,0 136,4 142,9	78,5 114,6 118,8 133,4 138,2 145,4 155,9 164,3 167,6 171,0 175,5 178,2 181,1 182,5 183,8 187,1 188,6 189,4 190,6	0,6 7,0 6,5 16,8 21,0 30,6 50,2 69,8 79,8 89,7 103,8 113,6 121,5 129,0 134,5 149,5 158,9 165,7 173,7 183,9

опытов.) Согласно рис. 1, давления пара различных серий опытов хорошо согласуются между собой, и, как следствие этого, вычисленные значения термодинамических характеристик также имеют хорошую схо-

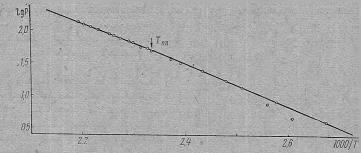


Рис. 1. Зависимость 1g P мм рт. ст.= $\mathbf{f}\left(\frac{1}{T^{\circ}\mathbf{K}}\right)$ для карбонила матриц

димость (табл. 2). Их средние значения для процесса сублимации и испарения соответственно равны:

$$\Delta\,H_T^\circ=15{,}58\pm0{,}49$$
 ккал/моль, $\Delta\,S_T^\circ=31{,}2\pm0{,}85$ е. э. $\Delta\,H_T^\circ=14{,}3\pm0{,}27$ ккал/моль, $\Delta\,S_T^\circ=28{,}73\pm0{,}7$ е. э.

Погрешность установилась по отклонению экспериментальных данных от полулогарифмической зависимости

$$\lg P = f\left(\frac{1}{T^{\circ}K}\right)$$

Таблица 2 Термодинамические характеристики процессов сублимации, испарения карбонила марганца по разным сериям опыта

${_{ riangle H}}^{\circ}_{T},$ ккал/моль	$\triangle S_T^{\circ}$, e. s.	$ riangle H_{T}^{\circ},$ ккал/моль	AS T, e. э.
Испара	ение	Сублим	ация
$15,04 \pm 0,2 \\ 14,96 \pm 0,20 \\ 14,49 \pm 0,20 \\ 14,45 \pm 0,65 \\ 13,53 \pm 0,25$	$\begin{array}{c} 29,52\pm0,48 \\ 29,34\pm0,50 \\ 30,51\pm0,50 \\ 28,15\pm1,40 \\ 26,17\pm0,50 \end{array}$	$\begin{array}{c} 15,49\pm0,35\\ 15,49\pm0,25\\ 15,67\pm0,48\\ 15,81\pm0,80\\ 15,96\pm0,02\\ 15,76\pm0,56 \end{array}$	$30,63\pm0,20$ $30,63\pm0,45$ $31,39\pm0,84$ $31,39\pm1,70$ $31,73\pm0,04$ $31,38\pm1,30$

в каждой серии опытов. Этот способ оправдан большим числом полученных с хорошей точностью экспериментальных данных для зависимости $P = f(T^\circ)$, что практически исключает расчет среднеквадратичной погрешности.

Давления пара процессов сублимации и испарения описываются

уравнениями:

lg
$$P$$
 mm pt. ct. = $-\frac{3427,32}{T}+6,8197, 78,-155^{\circ};$
lg P mm pt. ct. = $-\frac{3167,21}{T}+6,2819, 155-190^{\circ}.$

Термодинамические характеристики плавления, рассчитанные по разности средних значений Δ H° и Δ S° сублимации и испарения, отвечают значениям:

$$\Delta H_{\rm пл}^{\circ} = 1{,}19$$
 ккал/моль, $\Delta S_{\rm пл}^{\circ} = 2{,}45$ е. э.

Температуры плавления и кипения соответственно равны $155\pm0,5^{\circ}$ С, $232.8\pm0.5^{\circ}$ С.

Теплота образования карбонила марганца с учетом данных [2] и наших по сублимации равна 385,22 ккал/моль. Она мало отличается от 385,9 ккал/моль, приведенных в работе [2], что является подтверждением полученных нами термодинамических характеристик фазовых превращений.

Выводы

Статическим методом с мембранным нульманометром измерено давление пара карбонила марганца в интервале температур 78—190°. Установлены термодинамические характеристики процессов сублимации, испарения, плавления карбонила марганца и температуры его плавления и кипения.

Литература

[1] Н. А. Белозерский. Карбонилы металлов. М., 1958. [2] W. Good, D. Fairbrothev, G. Waddington. I. Phys. Chem., 62, 853 (1958). [3] А. К. Баев, В. В. Демьянчук. Тезисы докл. М., 1967. [4] С. А. Щукарев, Г. И. Новиков, А. В. Суворов. ЖНХ, 1, 11, 2433 (1956). [5] С. А. Щукарев, Г. И. Новиков, А. В. Суворов, А. К. Баев, ЖНХ, 3, 12, 2630 (1958).