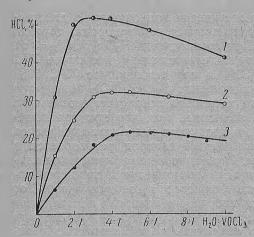
Н. И. ВОРОБЬЕВ, Ю. А. РАЙКОВ, З. А. ЭЙДЕ

ВЗАИМОДЕЙСТВИЕ ОКСИТРИХЛОРИДА ВАНАДИЯ С ВОДОЙ


В последнее время в литературе значительное внимание уделяется изучению физико-химических свойств окситрихлорида ванадия. Окситрихлорид ванадия образуется как примесь при хлорировании титансодержащего сырья и как основное вещество при хлорировании большинства ванадийсодержащих материалов [1-3]. Благодаря высокой летучести VOC1₃ может быть дегко очищен от примесей и использован в качестве исходного сырья для получения высокочистых соединений, в частности пятиокиси ванадия. Одним из способов получения пятиокиси ванадия из VOCl₃ является гидролиз последнего водой или водным раствором аммиака [4]. Химизм процесса изучен недостаточно. Наиболее серьезные исследования в этом направлении выполнены Копыловой, Рубан и Пономаревым [5-7]. В качестве основного метода исследования они использовали инфракрасную спектроскопию. Работа проводилась путем снятия спектров поглощения образцов VOCl₃, гидролизованных в различной степени. Анализируя полученные спектры, авторы обнаружили несколько новых полос поглощения, возникающих в результате гидролиза VOCl₃, и отнесли их к поглощению хлористого водорода, кислотных ОН-групп, молекул воды, оксидихлорида ванадия и ортованадатиона. Авторы пришли к выводу, что на начальных стадиях гидролиза VOCl₃ происходит образование ортованадиевой кислоты, оксидихлорида ванадия и хлористого водорода. Кроме того, в продуктах гидролиза присутствуют молекулы воды, входящие в состав гидратов. Таким образом, получена качественная картина процесса гидролиза VOCl₃ при незначительном количестве реагирующей воды. Химизм образования оксидихлорида ванадия в работах не обсуждается.

Для практических целей необходимо изучить процесс гидролиза VOCl₃ при различных соотношениях между реагирующими веществами, выяснить химизм образования VOCl₂ и влияние температуры на процесс гидролиза. Решению этих вопросов и посвящена настоящая работа.

В качестве исходных препаратов были использованы окситрихлорид ванадия, содержащий 99,8% VOCl₃, и дистиллированная вода. Перед опытами окситрихлорид ванадия подвергали двукратной перегонке. Установка для проведения исследований состояла из системы осушки азота, реометра, реакционного сосуда, термостата, бюретки с водой и системы поглощения отходящих газов.

Перед опытом в реакционный сосуд, представляющий собой пробирку диаметром 30 мм, загружали 4—6 г окситрихлорида ванадия, закрывали резиновой пробкой, через которую была пропущена бюретка с водой и стеклянная трубка для подачи азота. Сосуд помещали в термостат и начинали подавать через систему осушенный азот, содержащий не более 0,03% кислорода, со скоростью 5 л/час. По дости-

жении заданной температуры опыта в реакционный сосуд по каплям подавали рассчитанное количество воды. Для полного вывода газообразных продуктов реакции всю систему после каждого опыта продували азотом в течение 1 часа. Отходящие газы направляли в поглотительную систему, состоящую из двух склянок с концентрированной серной кислотой и двух склянок с 5%-ным раствором иодистого калия. Серная кислота поглощала унесенные пары окситрихлорида ванадия, а иодистый калий — хлористый водород и хлор, выделяющиеся в результате гидролиза VOCl₃.

20 - 2 - 4:1 6:1 8:1 H₂D:Voll.

Рис. 1. Зависимость количества выделяющегося хлористого водорода от соотношения $H_2O:VOCl_3$:

1 — при температуре 75° С; 2 — при температуре 50° С; 3 — при температуре 20° С.

Рис. 2. Зависимость степени превращения пятивалентного ванадия в четырехвалентный от соотношения H₂O:VOCl₃:
1 — при температуре 75° C; 2 — при температуре 50° C; 3 — при температуре 20° C.

По окончании опыта все продукты гидролиза подвергали химическому анализу по общепринятым методикам [8].

Исследования процесса гидролиза проводили при соотношениях

 $H_2O: VOCl_3$, от 1:1 до 10:1 и при температурах 20, 50 и 75°C.

Было отмечено, что при гидролизе окситрихлорида ванадия водой в газовую фазу наряду с хлористым водородом выделяется хлор, а в продуктах гидролиза появляется четырехвалентный ванадий. Зависимость количества выделяющегося хлористого водорода от соотношения $H_2O:VOCl_3$ при различных температурах представлена на рис. 1. Данные рис. 1 показывают, что количество хлористого водорода, выделяющегося в газовую фазу, при всех температурах проходит через максимум. Аналогичный характер имеет зависимость степени превращения пятивалентного ванадия в четырехвалентный от соотношения $H_2O:VOCl_3$ (рис. 2).

Анализируя полученные данные, можно высказать некоторые соображения о химизме процессов, протекающих при гидролизе окситрихло-

рида ванадия водой.

В соответствии с данными работы [7] при гидролизе окситрихлорида ванадия образуется ортованадиевая кислота по реакции:

$$VOCl_3 + 3H_2O = H_3VO_4 + 3HCl.$$
 (1)

Эта реакция является, очевидно, суммарной и состоит из следующих стадий:

$$VOCl_3 + H_2O + VO(OH)Cl_2 + HCl,$$
 (2)

$$VO(OH)Cl2 + H2O = VO(OH)2Cl + HCl,$$
 (3)

$$VO(OH)_2Cl + H_2O = VO(OH)_3 + HCl.$$
 (4)

Если исходить из предположения, что введенная вода полностью вступает в реакцию с окситрихлоридом ванадия по уравнению (1), то количество выделяющегося хлористого водорода должно составлять при соотношении $H_2O: VOCl_3=1:1-33,3\%$, при соотношении 2:1-66,6, при соотношении 3: 1 — 100% от теоретически возможного. В действительности, количество выделяющегося хлористого водорода гораздо меньше этих величин (см. рис. 1). При соотношении $H_2O: VOC!_3=3:1$ в течение одного часа в газовую фазу выделяется при температуре 20°C 18,3% HCl, при температуре 50°C 30% и при температуре 75°C 52% HCl. C дальнейшим увеличением соотношения H₂O: VOCl₃ количество выделяющегося хлористого водорода несколько возрастает, после чего начинает уменьшаться. Это можно объяснить гем, что при соотношениях H₂O: VOCl₃, больших чем 3:1, в продуктах гидролиза появляется избыточная вода. Выделяющийся хлористый водород растворяется в ней с образованием соляной кислоты. С увеличением избытка воды концентрация соляной кислоты уменьшается, что приводит к снижению количества хлористого водорода, выделяющегося в газовую фазу. Тот факт, что количество выделяющегося хлористого водорода не достигает теоретически возможного при соотношениях H₂O: VOCl₃ меньше или равных стехиометрическому, можно объяснить малой скоростью реакции гидролиза и возможностью образования сравнительно устойчивых промежуточных соединений, в состав которых входят молекулы воды.

В пользу этого говорит следующее:

1. При гидролизе окситрихлорида ванадия небольшим количеством воды образуется две фазы — жидкий раствор желтого цвета и пастообразный бурый осадок. Это явление наблюдается при температуре 20° вплоть до соотношений $H_2O: VOCl_3=3:1$. Химический состав продуктов представлен в табл. 1. Данные показывают, что по химическому составу жидкая фаза практически не отличается от чистого окситрихлорида ванадия. Она содержит 29,2-30% V^{+5} и 61-62% Cl'. Содержание ванадия и хлора в $VOCl_3$ составляет соответственно 29,4 и 61,4%. В инфракрасной области спектра этот продукт имеет четкую полосу поглощения в области 2061 см $^{-1}$, характерную для $VOCl_3$. Таким образом, несмотря на то, что количество введенной воды соответствует стехиометрическому (соотношение $H_2O: VOCl_3=3:1$), при 20° С в продуктах гидролиза сохраняется непрореагировавший окситрихлорид ванадия. Это показывает, что введенная вода довольно прочно связывается с продуктами гидролиза $VOCl_3$ в виде промежуточных соединений.

2. Если предположить, что промежуточными продуктами гидролиза $VOCl_3$ являются негидратированные оксигидроксихлориды ванадия, образующиеся по реакциям (2) и (3), то содержание ванадия и хлора в них должно составлять для $VO\left(OH\right)Cl_2$ 32,9 и 45,8%, а для $VO\left(OH\right)_2Cl$ 37,4 и 26% соответственно. В действительности при температуре 20°С и соотношениях $H_2O:VOCl_3$ от 1:1 до 4:1 образующийся осадок содержит 22,7% V общ. и 39% Cl'. Атомарное соотношение Cl:V равно 2,5:1. Если образующийся продукт представить в виде соединения $VO\left(OH\right)_{0.5}Cl_{2.5}$, то содержание ванадия и хлора в нем должно составлять 32 и 54% соответственно, что не отвечает действи-

Химический состав продуктов гидролиза VOC13

Молярные соотношения Н₂О: VOCl₃	20°C					50°C					75°C				
	жидкая	фаза, %	осадок, %			жидкая фаза, %		осадок, %			жидкая фаза, %		осадок, %		
	V _{общ}	Ci'	V _{общ}	V+4	Cl'	V _{общ}	Cl'	V _{общ}	V+4	C1'	V _{общ}	Cl'	V _{общ}	V +4	Cl'
1:1	29,7	60,9	21,6	1,33	40,4	29,3	61,30	24,8	3,56	39,50	29,7	61,3	29,2	4,57	36,9
2:1	30,4	61,4	22,7	1,43	39,8	29,08	61,6	24,7	3,89	39,7	_		29,9	5,60	32,6
3:1	29,74	62,05	22,6	1,55	38,5		1-	24,6	4,37	38,6	_		27,2	6,74	30,4
4:1	_	_	22,7	1,76	38,7	_	_	22,8	5,75	34,3	-		25,5	7,10	29,5
5:1	_	_	21,2	2,16	36,0	-	-	20,9	5,5	32,3	_		23,2	7,08	27,0
6:1		_	18,9	2,62	31,9	_	_	19,8	4,83	28,7	— ·	_	21,5	7,04	24,0
7:1	_	_	17,9	2,20	30,4	_	_	19,4	3,91	26,0	_		20,8	5,12	21,0
8:1	_	_	16,9	2,61	28,2	_	· <u> </u>	_	_	-			_	-	
9:1		_	15,9	1,94	27,8	_	_	_	-	_	_	_	_	_	_
10:1	 ,	_	14,7	1,32	26,5	_	_	15,6	2,75	24,2			16,0	3,67	22,5

тельности. Следовательно, в состав промежуточных соединений должна входить вода. Расчетная формула образовавшегося промежуточного

продукта имеет вид VO (OH) $_{0,5}$ Cl_{2,5} · 3,36H₂O.

Такой продукт не является каким-то устойчивым индивидуальным соединением. Скорее всего это смесь соединений различного состава. В процессе гидролиза состав этого продукта непрерывно изменяется в зависимости от продолжительности реакции, температуры и других факторов. Так, при температурах 50 и 75°C состав образующихся осадков выражается формулами: VO (OH) $_{0,7}$ Cl $_{2,3} \cdot 2,5$ H $_2$ O и VO(OH) $_{1,18}$ Cl $_{1,82} \times 1,3$ H $_2$ O. Поэтому правильнее выражать состав образующихся промежуточных продуктов формулой VO(OH) $_x$ Cl $_{3-x} \cdot n$ H $_2$ O. С увеличением температуры и продолжительности гидролиза содержание хлора в промежуточных продуктах уменьшается, а содержание гидроксильных групп возрастает.

Эти факты показывают, что гидролиз окситрихлорида ванадия протекает путем постепенного замещения ионов хлора в VOCl₃ гидроксильными группами воды с образованием нестойких промежуточных соеди-

нений типа VO(OH) $_{x}$ Cl_{3-x} · nH₂O.

Параллельно с гидролизом в реакционной смеси протекают окислительно-восстановительные реакции, в результате которых в продуктах гидролиза появляются хлор и четырехвалентный ванадий. Реакционная смесь, получающаяся при гидролизе VOCl₃, содержит пятивалентный ванадий в виде различных соединений, молекулы воды и хлористого водорода. Известно, что под действием сильных окислителей хлористый водород разлагается с выделением хлора. В данном случае роль окислителя выполняет, очевидно, пятивалентный ванадий.

Из литературы [9] известно, что пятиокись ванадия реагирует с хлористым водородом в водном растворе по уравнению:

$$V_2O_5 + 6HCl = 2VOCl_2 + Cl_2 + 3H_2O.$$
 (5)

Аналогичные процессы протекают, очевидно, и в данном случае. Поскольку конечными продуктами гидролиза VOCl₃ являются ортованадиевая кислота и хлористый водород, то образовавшиеся продукты могут вступить в реакцию друг с другом по уравнению:

$$2H_3VO_4 + 6HCl = 2VOCl_2 + Cl_2 + 6H_2O.$$
 (6)

Возможно также взаимодействие хлористого водорода и с промежуточными продуктами по реакциям:

$$2VO(OH)Cl_2 + 2HCl = 2VOCl_2 + Cl_2 + 2H_2O,$$
 (7)

$$2VO(OH)Cl + 4HCl = 2VOCl_2 + Cl_2 + 4H_2O.$$
 (8)

В результате этих реакций в продуктах гидролиза появляются хлор

и четырехвалентный ванадий.

С увеличением соотношения H_2O : $VOCl_3$ степень превращения пятивалентного ванадия в четырехвалентный вначале возрастает, достигает максимума, после чего начинает уменьшаться (см. рис. 2). Это можно объяснить тем, что с увеличением количества добавляемой воды возрастает количество выделяющегося хлористого водорода и в свою очередь увеличивается скорость реакций (6—8).

При большом избытке воды образуется соляная кислота, причем ее концентрация вначале возрастает, достигая максимума, а затем на-

чинает уменьшаться. Аналогичный характер приобретает зависимость степени превращения пятивалентного ванадия в четырехвалентный от соотношения $H_2O: VOC!_3$. С увеличением температуры скорость реакций (6—8) возрастает, поэтому при прочих равных условиях возрастает также и степень превращения пятивалентного ванадия в четырехвалентный (см. рис. 2).

Таким образом, вторичным процессом при гидролизе VOCI₃ является взаимодействие хлористого водорода с продуктами гидролиза с образованием оксидихлорида ванадия и хлора. Промежуточные продукты гидролиза содержат гидратированные оксигидроксихлориды ва-

надия и гидратированный оксидихлорид ванадия.

Представляло определенный интерес изучить устойчивость образующихся промежуточных соединений при обычной и повышенной температурах. С этой целью необходимо было проследить за динамикой выделения хлористого водорода при гидролизе VOCl₃ во времени. На рис. 3 представлена зависимость количества выделяющегося хлористого водорода от продолжительности реакции при соотношении $H_2O:VOCl_3=3:1$ и температуре 20° С. Данные показывают, что за 7 час. в газовую фазу выделяется около 50% хлористого водорода, в то время как за час лишь 18,3% НС1. Таким образом, промежуточные продукты неустойчивы и разлагаются уже при обычной температуре. При температуре 20° С процесс разложе-

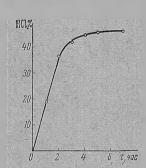


Рис. 3. Зависимость количества выделенного HCl от продолжительности гидролиза $(t=20^{\circ}\,\text{C},\ H_2O:\text{VOCl}_3=3:1)$.

ния до конца не доходит, поскольку количество выделяющегося хлористого водорода с увеличением продолжительности гидролиза резко снижается.

Для изучения термической устойчивости образующихся продуктов был использован метод дифференциального термического анализа последних с привлечением химического и рентгенофазового анализа про-

дуктов разложения.

На рис. 4 в совмещенном виде представлены термограмма и кривые динамики выделения хлористого водорода и хлора, полученные при нагревании промежуточных продуктов гидролиза, образующихся при соотношении $H_2O: VOCl_3=3:1$ и температуре $20^{\circ}C$ после удаления избыточного $VOCl_3$.

На дифференциальной кривой зарегистрировано два эндотермических эффекта при температурах 111 и 667°С. Первый эффект сопровождался значительным изменением веса и выделением в газовую фазу хлористого водорода и хлора. Количество выделившегося хлористого водорода соответствует теоретически возможному при полном разложении продуктов гидролиза. Наличие хлора в газовой фазе объясняется протеканием реакций (6—8). Твердые продукты разложения, отобранные после первого эффекта, представляют собой по результатам химического и рентгенофазсвого анализа смесь пятиокиси и четырехокиси ванадия. Содержание хлора в них составляет десятые доли процента. Следовательно, первый эффект соответствует термическому разложению промежуточных продуктов по реакциям:

$$2VO(OH)_{x}Cl_{3-x} \cdot nH_{2}O = V_{2}O_{5} + 2(3-x)HCl + mH_{2}O.$$
(9)
$$2VOCl_{2} \cdot n_{1}H_{2}O = V_{2}O_{4} + 4HCl + (n_{1}-2)H_{2}O.$$
(10)

В результате этих реакций образуется пятиокись и четырехокись ванадия.

Второй эффект на термограмме соответствует плавлению образовавшейся пятиокиси ванадия, так как он совпадает с температурой плавления пятиокиси ванадия и не сопровождается изменением веса и газовыделениями.

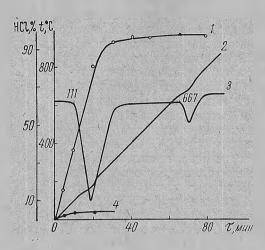


Рис. 4. Кривые нагревания продуктов гидролиза $VOCl_3$, полученных при $20^{\circ}C$ и соотношении $H_2O:VOCl_3=3:1$ в инертной атмосфере: I— простая запись температуры; 2— дифференциальная запись температуры; 3— кривая динамики выделения HCl; 4— кривая динамики выделения Cl_2 .

Таким образом, промежуточные продукты гидролиза нацело разлагаются в интервале температур 100—300°С.

Выводы

- 1. Изучено взаимодействие окситрихлорида ванадия с водой при температурах 20, 50 и 75°C и соотношениях $H_2O:VOCl_3$ от 1:1 до 10:1.
- 2. Показано, что процесс гидролиза VOCl₃ протекает путем постепенного замещения ионов хлора гидроксильными группами воды с образованием в качестве промежуточных продуктов гидратированных оксигидроксихлоридов ванадия переменного состава типа $VO\left(OH\right)_xCl_{3-x}\cdot nH_2O$.

3. Вторичным процессом при гидролизе VOCl₃ является взаимодействие выделяющегося хлористого водорода с промежуточными продуктами гидролиза с образованием оксидихлорида ванадия и хлора.

4. Образующиеся промежуточные продукты являются термически нестойкими и разлагаются в интервале температур 100—300°С с образованием окислов ванадия и выделением хлористого водорода и паров воды.

Литература

[1] F. E. Block, M. I. Ferrante. I. Electrochem. soc., 108 (5), 464 (1961). [2] С. А. Амирова, В. В. Печковский, Р. Х. Курмаев. Изв. вузов. Цветная металлургия, 4, 102 (1963). С. А. Амирова, В. В. Печковский, Р. Х. Курмаев. Цветные металлы, 12, 57 (1963). [4] Р. Г. Янкелевич. Автореф. канд. дисс. М., 1967. [5] Е. А. Копылова, Н. Н. Рубан, К. А. Виноградова. Тр. Ин-та металлургии и обогащения АН Каз. ССР, 12, 145 (1965). [6] Е. А. Копылова, Н. Н. Рубан, В. Д. Пономарев, К. А. Виноградова. Изв. АН Каз. ССР. Сер. хим., 1, 24 (1966). [7] Е. А. Копылова, Н. Н. Рубан, В. Д. Пономарев. Изв. АН Каз. ССР. Сер. хим., 1, 3 (1967). [8] В. Ф. Гиллебранд, Г. Э. Лендель, Г. А. Брайт, Д. И. Гофман. Практическое руководство по неорганическому анализу. М., 1957. [9] В. Л. Золотавин. ЖОХ, 24, 3, 433 (1954).