Л. М. ВИНОГРАДОВ, Г. Ф. ПИНАЕВ

К ТЕРМОДИНАМИКЕ ВОССТАНОВЛЕНИЯ ДВУОКИСИ СЕЛЕНА СЕРНИСТЫМ ГАЗОМ

Из проведенного ранее термодинамического анализа реакций восстановления двуокиси селена сернистым газом [1—6] следует, что в отсутствии водяных паров при температурах выше 273°К восстановление двуокиси селена до элементарного селена маловероятно, тогда как при наличии даже следовых количеств воды это взаимодействие оказывается возможным в интервале температур 273—523°К.

Однако эти выводы нуждаются в проверке и уточнении, поскольку в цитируемых работах [1—6] использованы недостаточно обоснованные или явно устаревшие значения термодинамических функций основных

участников реакций восстановления двуокиси селена.

Новые экспериментальные данные по термодинамике элементарного селена и его двуокиси [7, 8], а также уточнение термодинамических функций остальных участников реакций восстановления SeO₂ позволяет повысить точность термодинамичесих расчетов указанных реакций. Кроме того, интересно выяснить вероятность протекания реакций восстановления газсобразной двуокиси селена в присутствии окислов металлов, термодинамика которых в литературе не освещена.

Учитывая результаты работ [9, 10], можно принять, что при малых концентрациях селена в газовой фазе его основной формой является Se₂. Уравнение для теплоемкости Se₂, приведенное в справочнике [11] для температур 1000—2000°K, вполне совпадает с уравнением, полученным в интервале температур 400—1000°K с использованием численно-

го значения волнового числа Se₂ согласно [12].

Значения термодинамических функций для остальных участников реакции восстановления SeO_2 сернистым газом заимствованы из литературных источников [13—20] и приведены в табл. 1.

Значения изобарно-изотермического потенциала исследуемых реак-

ций (1-9) (см. табл. 1) вычислены из известного соотношения

$$\Delta Z_T = \Delta H_T - T \Delta S_T.$$

Отсутствие данных по теплоемкости селенита цинка не позволило оценить значения ΔZ_T для реакций (10—14) точнее, чем по первому приближению.

На основании вышеизложенного нами были получены результаты, представленные в табл. 2 и на рис. 1. Как видно, с ростом температуры константы равновесия падают весьма резко в случае образования твердого селена по реакции (1) и не очень значительно для реакции (2).

Наличие воды в системе, согласно реакции (3—6), резко увеличивает вероятность восстановления SeO_2 при относительно низких температурах. Однако с ростом температуры эта возможность падает, и в области $450-550^{\circ}{\rm K}$ восстановление становится маловероятным. При

Термодинамические свойства некоторых неорганических веществ

№ реакции	Формула вещества, его состояние	ΔH ₂₉₈ , ккал/моль	S ₂₉₈ , кал/моль град	Теплоемкость, кал/моль град			
				$c_{\mathbf{p}} = a + bT + C'T - z$	c _P , 298	Температурный интервал, °К	Литературный источник
1	[Se]*			4,53+5,510-3T	6,17	273—493	[13]
2	(1/2 Se ₂)	16,57	30,11	$4,465-0,215\ 10^{5}T-2$	4,23	400—2000	[10,11,14]
3	(SeO ₂)	-30,30	63,31	11,38+2,28 10-3 <i>T</i> -1,63 10 ⁵ <i>T</i> -2**	10,23	273—1700	[7,8,14]
4	(SO ₂)	— 70,96	59,29	$10,17+3,0$ $10-3T-1,63$ 10^5T-2	9,53	273—1800	[13,14,15]
5	(SO ₃)	-94,45	61,35	$13,70+6,42$ $10-3T-3,12$ 10^5T-2	12,11	273—1200	[13,14,16]
6	(H ₂ O)	-57,80	45,11	$7,17+2,56\ 10^{-3}T+0,08\ 10^{5}T^{-2}$	8,02	298—2500	[14,18]
7	$\{H_2SO_4\}$	194,60	37,50	18,19+50,3 10-3 <i>T</i> **	33,20	298—600	[14,19]
8	(H_2SO_4)	-174,12	71,93	$21,84+9,2\ 10^{-3}T-5,1\ 10^{5}T-2**$	19,29	400—800	[14,16]
9	(O ₂)	0	49,00	$7,52+0,81\ 10^{-3}T-0,90\ 10^{5}T^{-2}$	7,02	298—3000	[13]
10	[ZnO]	83,40	10,40	$11,71+1,22 \ 10^{-3}T-2,18 \ 10^{5}T^{-2}$	9,62	273—1573	[13]
11	[ZnSO ₄]	233,80	29,80	17,07+20,8 10-3T	23,27	298—1000	[13]
12	[ZnSeO ₃]	153,50	23,50			=	[20]

^{*} Серый гексагональный селеп.
** Уравьение выведено авторами на основании литературных данных.

Изменение ΔZ реакции взаимодействия SeO_2 с SO_2

nez	Реакция	ΔZ т, ккал/моль, при T , $^{\circ}$ Қ											
Ne peak		298	300	350	400	450	500	550	600	650	700	750	800
	(SeO ₂)+2(SO ₂) ∠ [Se]+ +2(SO ₃)	- 2,03	- 2,00	+ 0,17	+ 2,87	+ 5,09	+ 7,10	+10,49	+12,58	+14,09	_	_	_
2 (S+(S)→(S)→(S)→(S)→(S)→(S)→(S)→(S)→(S)→(S)→	$(SeO_2) + 2(SO_2) \stackrel{\rightarrow}{\rightleftharpoons}_1/_2(Se_2) + + 2(SO_3)$. —	+11,50	+12,81	+14,62	+16,38	+17,63	+19,24	+20,75	+22,36	+23,87
	$(SeO_2) + 2(SO_2) + 2(H_2O) \Rightarrow $	26,17	-24,28	-18,74	-12,39	- 6,97	- 1,66	+ 4,91	+10,46	-		_	-
	\rightleftarrows [Se]+2(H ₂ SO ₄) (SeO ₂)+2(SO ₂)+2(H ₂ O) \rightleftarrows	_	_	_	- 3,76	+ 0,75	+ 5,86	+10,80	+15,51	+20,20	+25,15	+29,60	+34,99
	\gtrsim 1/2(Se ₂)+2(H ₂ SO ₄) (SeO ₂)+2(SO ₂)+2(H ₂ O) \gtrsim	45 ,73	-44,14	-35,35	-26,55	-17,75	9,68	+ 0,37	+ 8,80	_	_		_
	\rightleftarrows [Se]+2 \ddagger H ₂ SO ₄ } (SeO ₂)+2(SO ₂)+2(H ₂ O) \rightleftarrows	_		_	-17,92	10,03	- 2,16	+ 6,26	+13,85	1=	-	_	-
	$\begin{array}{l} \stackrel{>}{\sim} 1/_2(\text{Se}) + 2\{H_2\text{SO}_4\} \\ /_2(\text{Se}_2) + (\text{O}_2) \stackrel{>}{\sim} (\text{SeO}_2) \end{array}$	_	_	_	-39,93	- 38,80	-37,76	-3 6,70	-35,42	-34,06	-32,83	—31,57	-30,54
9 (S ⊋	$(SeO_2)+2(SO_2)+2[ZnO] \Rightarrow$	-89,03	-88,89	-80,89	-72,03	68,03	-61,38	-55,11	-49,62	-43,14			_
	$\begin{array}{l} [\text{Se}] + 2[Z \text{nSO}_4] \\ (\text{SeO}_2) + 2(\text{SO}_2) + 2[Z \text{nO}] \neq \end{array}$	_		_	-63,10	-60,31	53,86	-49,20	-44,57	-38,99	-33,23	-27,68	-22,63
	$\gtrsim^{1/_2(\operatorname{Se}_2)} + 2[\operatorname{ZnSO}_4]$ (SeO ₂)+[ZnO] \gtrsim [ZnSeO ₃]	-24,80	-24,75	-22,26	-19,71	-17,23	-14,72	-12,22	- 9,66	- 6,90	- 4,69	_ 2,21	+ 0,32
$+(S)$ 12 ZnS + ZnS 13 ZnS \Rightarrow 14 ZnS	ZnSeO₃]+2[SO₂]≵[Se]+	-20,73	-20,59	-18,40	-14,72	-14,19	-12,42	10,08	- 8,86	- 8,13		_	_
	$+(SO_3)+[ZnSO_4]$ $ZnSeO_3]+2(SO_2)+$	-64,23	-64,14	-58,63	-52,32	-50,80	-46,66	-42,89	-39,96	- 36,24	_	-	
	$+[ZnO] \rightleftarrows [Se] + 2[ZnSO_4]$ $ZnSeO_3] + 2(SO_2) \rightleftarrows$			_	- 6,09	- 6,47	- 4,90	_ 4,19	- 3,81	- 2,98	- 1,56	- 0,45	+ 0,30
	$2^{1/2}(Se_{2})+(SO_{3})+[ZnSO_{4}]$ $ZnSeO_{3}]+2(SO_{2})+[ZnO]$ $2^{1/2}(Se_{2})+2[ZnSO_{4}]$	-	=	-	-43,39	-43,08	-39,14	-36,98	-34,91	-32,09	-28,54	-25,47	-22,31

образовании газообразного селена по уравнениям (4) и (6) и парообразной серной кислоты в реакциях (3) и (4) отмечается некоторое увеличение изобарно-изотермических потенциалов реакций по отношению к реакции (5), что приводит к смещению верхней границы восстановления газообразной двуокиси селена в сторону более низких температур. Реакция (4) в рассмотренном диапазоне температур маловероятна. Термодинамически более выгодно восстановление SeO₂ сернистым ангидридом с образованием жидкой серной кислоты и твердого селена по реакции (5).

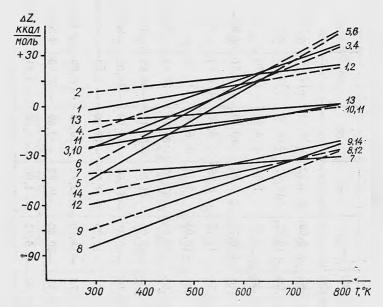


Рис. 1. Зависимость изобарно-изотермического потенциала реакций $(1-\hat{l}4)$ от температуры

Восстановление двуокиси селена сернистым газом в присутствии окиси цинка по уравнениям (8) и (9) оказывается значительно более вероятным, чем по реакциям (3—6) восстановления SeO₂ сернистым ангидридом при наличии паров воды.

Интересными кажутся и возможные реакции (11—14) восстановления селенита цинка, факт образования которого вполне обусловлен термодинамически по реакции (10) и отмечен авторами [20, 21]. Как видно из табл. 2 и рис. 1, вероятность этих реакций высока практиче-

ски во всем рассмотренном температурном интервале.

Из проведенного анализа следует, что при сорбции газообразной двуокиси селена окисью цинка в присутствии сернистого газа может иметь место наряду с образованием селенита цинка по реакции (10) значительное восстановление SeO_2 по реакции (8) и (9) и восстановление $ZnSeO_3$, согласно уравнениям (11—14). Это, возможно, является одной из причин ухудшения сорбции селена на окиси цинка в присутствии SO_2 .

Во всех предыдущих работах по восстановлению двуокиси селена не отмечалось влияние кислорода на этот процесс. Между тем термодинамический анализ реакции (7) свидетельствует о практической невозможности протекания восстановления SeO_2 до элементарного селена в присутствии кислорода.

Выводы

1. Рассмотрена термодинамика некоторых реакций с участием га-

зообразной двуокиси селена и элементарного селена.

2. Показано, что вероятность восстановления SeO_2 до элементарного селена с помощью сернистого ангидрида в значительной мере повышается в присутствии паров воды и в гораздо большей степени при наличии окисла металла (окись цинка).

Литература

[1] Д.М. Чижиков, В. П. Счастливый. Селен и селениды. М., 1964. [2] Л. С. Гецкин, Е. В. Маргулис, Ю. С. Ремизов. ЖПХ, 35, 6, 1192 (1962). [3] Л. С. Гецкин, В. В. Яцук, В. П. Савраев. ЖПХ, 34, 12, 2609 (1961). [4] Н. Schulze. J. prakt. Chem., 32, 390 (1885) [5] Н. Ј. Gmelen, Н. L. Pilley. Proc. Roy. Sos., A 140, 840, 373 (1933) [6] Е. В. Маргулис, Л. С. Гецкин, Н. С. Мильская. ЖНХ, 7, 4, 729 (1962). [7] G. Nagarajan. ВиП. Soc. Chim. Belg., 72, 524 (1963). [8] Р. Б. Добротин, А. В. Суворов, С. М. Гаджиев. Проблемы современной химии ксординационных соединений. Т. 2. Л., 1968, стр. 23. [9] В. В. Илларионов, Л. М. Лапина. ДАН СССР, 114,5, 1021 (1957). [10]. Н. Rau. Вег Випѕепдев, рһузік. Сhem., 71, 7, 711 (1967). [11] И. Д. Верятин, В. П. Мишаров и др. Термодинамические свойства неорганических веществ. М., 1965. [12] Г. Гецберг. Колебательные и вращательные спектры многоатомных молекул. М., 1948. [13] Краткий справочник физико-химических величин. Под ред. К. П. Мищенко и А. А. Равделя. Л., 1967. [14] Термических величин. Под ред. акад. В. П. Глушко. М., 1966 [15] В. Ј. Мсbride, S. Gordon. J. Chem. Phys., 35, 6, 2198 (1961). [16] R. W. Lovejoy, J. H. Colwell, D. F. H. Eggers, G. D. Helsey. J. Chem. Phys., 36, 3, 612 (1962). [17] Р. А. Giguere, R. Sivoive. J. Am. Chem. Soc., 85, 3, 287 (1963). [18] W. F. Giague E. W. Horning, J. E. Kunzler, T. R. Rubin. J. Am. Chem. Soc., 82, 1, 62 (1960). [19] Я. Е. Вильнянский, З. П. Персиц. Тр. УНИХИМ, 4, 83 (1957). [20]. С. С. Бакеев, Е. А. Букетов, А. С. Пашинкин. Тр. Хим. металлург. ин-та АН Каз. ССР, 4, 45 (1967).