МИНСК

1972

А. К. БАЕВ

КОМПЛЕКСООБРАЗУЮЩАЯ СПОСОБНОСТЬ ГАЛОГЕНИДОВ ВТОРОЙ — ШЕСТОЙ ГРУПП ПЕРИОДИЧЕСКОЙ СИСТЕМЫ

Исследование комплексных соединений — одно из основных направлений в современной химии. Использование разнообразных физикохимических методов исследования — масс-спектрометрического, электронографического, спектральных и различных термодинамических — привело к утверждению мнения о существовании координационных соединений в парообразном состоянии. Примерами могут служить многочисленные гидратные формы [1], полимеризованные смешанные соединения $B_3O_3F_3$ [2], координационные соединения хлоридов редкоземельных элементов с хлоридами щелочных металлов типа KLnCl4 [3], фторидное

соединение NaZ_2F_5 [4] и др.

Большие успехи достигнуты в изучении галоидных соединений. Для них установлено устойчивое существование в паре соединений координационного типа для галогенидов различных групп Системы (число их превышает цифру 50). Правда, число исследованных систем и установленных координационных соединений в твердом состоянии несравненно больше, что можно объяснить не только трудностями исследования газов, но и природой индивидуальных веществ — способностью образовывать устойчивые комплексные формы при высоких температурах в конденсированном и газообразном состояниях. Особый интерес представляет рассмотрение индивидуальных галоидных соединений в расплавленном и парообразном состояниях. Накопившийся экспериментальный материал позволяет провести подобный анализ и высказать соображения о комплексообразующейся способности (КС) [5] у галогенидов элементов одной группы Системы и у соединений с одинаковым валентным состоянием атома комплексообразователя.

Под комплексообразующей способностью мы понимаем способность атома проявлять, помимо основных валентных вакансий, избыточные связи. Уместно заметить, что Менделеев отмечал ошибочность представлений, связанных с рассмотрением в качестве предельного соединения у натрия формы NaX, например, Na₂O, NaCl [6]. Эта точка зрения, подчеркивающая невозможность разделения простых и комплексных соединений [7], подтверждается всем экспериментальным материалом. Действительно, соединение NaCl, независимо от агрегатного состояния, находится в полимеризованном виде: в кристаллическом состоянии ее элементарная ячейка имеет форму Na₆Cl₆ [8], в расплавленном существуют комплексные ионы [5] и в парах присутствуют молекулы Na₄Cl₄ [9,10] с содержанием мономерных молекул около 50% [6]. В качестве характеристики комплексообразующей способности при изменении агрегатного состояния мы считаем возможным использовать теплоты плавления, испарения, сумблимации. Поясним правомерность такого положения.

За исключением галогенидов редкоземельных элементов (РЗЭ), фторидов тория, алюминия и циркония, для всех остальных соединений

A K BAEB

элементов III—VI групп теплоты испарения и сублимации не превышают 25—30 ккал, для многих из них они ниже 15 ккал [11—15]; как правило, теплоты плавления их низки, что указывает на незначительное преобразование кристаллической структуры при плавлении. Действительно, при плавлении соединений с чисто ковалентными связями или близкими к ним, например галогенидов углерода, структура не претерпевает существенного изменения, и расплав состоит из молекул (MX_n) , между которыми осуществляются слабые вандерваальсовские связи. Об этом свидетельствуют исследования CCl_4 методом рассеяния рентгеновских лучей [16]. Слабые связи между частицами (молекулами) кристаллической молекулярной решетки у CCl_4 , CBr_4 обусловливают и низкие значения их теплот плавления (0.59 и 0.945 ккал).

Почти двукратное превышение теплоты плавления (10,25 ккал) над теплотой испарения (6,02 ккал) у трихлорида железа указывает на более глубокие преобразования структуры при плавлении, чем при ис-

парении.

Вскрытая нами [5,10] на примере галогенидов щелочных металлов взаимосвязь комплексообразующей способности с ионным и ковалентным типами химической связи, с константой Маделунга, энергией кристаллической решетки, координационным числом и энергией связи позволяет использовать эту характеристику и для других групп Системы. Кроме того, это дало основание для рассмотрения процессов фазовых превращений как диссоционных, т. е. указало на химическую природу плавления, испарения и сумблимации. Другими словами, это позволило вскрыть родство процессов фазовых превращений, полимеризации, комплексообразования и процессов конпропорционирования, диссоциации, диспропорционирования по ступеням замещения и окисления [5,10].

В этой связи необходимо также проанализировать энергетические характеристики и энтропии процессов фазовых превращений у галоге-

нидов элементов II—VI групп Системы.

Энтальпии фазовых превращений галогенидов щелочноземельных металлов. Рассмотрим теплоты плавления и теплоты суммарного процесса парообразования. Под последним мы понимаем энергию процесса испарения и сумблимации, вычисленную на основе данных по давлению

пара без учета его состава.

Сравнивая теплоты плавления и сублимации у галогенидов щелочноземельных металлов (ГЩЗМ) [11,13,14,19] в зависимости от увеличения массового числа атома и аниона соли, мы видим, что общий вид зависимости от аниона соли при фазовом превращении сохраняется только у солей бериллия, магния и кальция, в то время как у солей стронция и бария характер зависимости не соответствует изменению размера атома, ионизационного потенциала и других характеристик. Те же особенности и в ряду Ве-Са-Ва. Так, у фторидов и хлоридов при сублимации ряд Be—Ba преобразуется на ряд $SrF_2(Cl_2)$ — $CaF_2(Cl_2)$ — —Ba $F_2(Cl)_2$ —Mg $F_2(Cl)_2$ —Be $F_2(Cl)_2$; у бромидов происходит его преобразование на ряд Ba—Sr—Ca—Mg—Ве, т. е. последовательность изменения теплот сублимации в этих рядах не соответствует снижению энергии диссоциации М-Х и МХ-Х от аниона или соответственно катиона соли, а также энергии кристаллической решетки и диссоциации полимерной молекулы на мономер и последней на ионы. Это связано с тем обстоятельством, что теплота плавления, испарения или сублимации характеризуется не только величиной энергии связи МХ соответственно дальней или ближней координацией, но также числом раз-

рывающихся связей и глубиной процесса диссоциации [15]. Другими словами, как велика будет концентрация ионов MX_-, MX_+, M^{+2} в расплаве в результате разрушения (диссоциации) элементарной кристаллической структуры при плавлении или как велика в парах концентра-

ция молекул типа M_2X_4 и MX_2 при сублимации и испарении.

Очевидно, пониженное значение теплоты плавления должно быть у соединения, у которого числовое значение произведения энергии различного сорта связей (ближнего и дальнего порядка) на степень превращения и глубину диссоциации будет наименьшим [5,10]. Такое соотношение может выполняться при условии, если один из сомножителей, например энергия связи, по своему численному значению крайне мала, хотя степень превращения и даже глубина диссоциации значительны.

Ранее было показано [5], что в качестве характеристики изменения при фазовом превращении, КС и преобразования структуры следует использовать величину приведенной теплоты фазового превращения.

$$h_{\phi} = \frac{\Delta H_{\phi, \text{np}}^0 p}{\Delta U_{\text{MX}n}},\tag{1}$$

где

 $\Delta H^0_{\Phi,\mathrm{np}}$ — тепловой эффект фазового превращения; ΔU_{mx_n} — энергия связи M—X, или энергия кристаллической

решетки.

Уравнение (1) следует из положения, что природа взаимодействия дальнего и ближнего порядка одна и та же и состоит в стремлении присоединять, помимо валентных, еще избыточные электроны [10], в результате чего характер изменения энергии взаимодействия дальнего и ближнего порядка, энергии диссоциации димерной молекулы и энергии диссоциации процессов

$$MX_2 = MX^+ + X^-,$$
 (2)

$$MX^{+} = M^{-+} + X^{-}$$
 (3)

идентичен [17-20].

Следует заметить, что в ряду Ве-Ва изменения энергий диссоциаций

$$MX_2 = MX + X, (4)$$

$$MX = M + X \tag{5}$$

имеют симбатный характер (табл. 1). Однако было бы ошибочным проводить сравнения числовых данных этих процессов в отношении характера изменения энергии взаимодействия ближнего и дальнего порядка, так как заряды атомов металла в них различны. Кроме того, уменьшение энергии диссоциации процесса (5) для ряда Ве-Ва обусловливает экзотермичность процесса диспропорционирования

$$2MX = M + MX_2, (6)$$

т. е, образование дигалида из моногалида.

Данные табл. 1 указывают на симбатный характер изменения теплоты образования дигалидов щелочноземельных металлов и энергии кристаллической решетки, ионизационных потенциалов, энергий атомизации, диссоциации димерной молекулы на мономерную.

Таблица 1

Энергетические характеристики фторидов и хлоридов щелочноземельных металлов, ккал/моль [11, 13, 14, 17—20]

		=	- 2	Φ	ториды			Хлориды					
MX ₂	<i>I</i> , эв,	Δ H ⁰ arm	$_{(M_2)}^{\Lambda H^0} = 2(M)$	∆H°o6p	$\begin{array}{c} \Delta H^o \\ M F_z = \\ = M F + F \end{array}$	AH ⁰ MF=M+F	<i>и</i> кр, р	AH° субл	ΔH°o6p	AH° MCI2= = MCI+CI	AH ^o MCI= = M + CI	<i>U</i> кр. р	AHcy6n MCl2
$\begin{array}{c} \operatorname{BeX}_2 \\ \operatorname{MgX}_2 \\ \operatorname{CaX}_2 \\ \operatorname{SrX}_2 \\ \operatorname{BaX}_2 \\ \operatorname{RaX}_2 \end{array}$	6,111 5,692		8 6,4 —	263,51 290,3 289,0		121 ± 30 73,6 81 ± 16	623,9 580,6	87 102 102	153,0 190,4 197,8	110 103 145 ± 25 146 ± 14 174 ± 12	$64,6$ 70 ± 14		53 73,7 (71)

В этой связи рассмотрим цикл Борна—Габера

$$U_{\rm kp} = \Delta H_T^0 + I + S_m + \frac{1}{2} D_2 nE. \tag{7}$$

Энергия сродства к электрону (E) и диссоциации молекулы галогена на атомы (D_2) у всех соединений щелочных металлов с одним анионом остаются постоянными; теплота сублимации (S_m) для ряда Mg—Rа мало отличается от средней величины 39 ккал. Таким образом, энергия кристаллической решетки зависит от ионизационного потенциала (I) и теплоты образования из простых тел (ΔH_n°) .

Снижение энергии диссоциации

$$(MX_2) = M^{+2} + 2X^- \tag{8}$$

в ряду Ве-Ва позволяет предположить, что стерический фактор оказывает незначительное влияние на теплоту образования галоилных соединений подгруппы бериллия и еще в меньшей мере проявляется у соединений с одноименным анионом. Наиболее естественно, как нам кажется, симбатный характер зависимости у $\mathrm{Be-Ba}$ между $U_{\mathrm{кр}}$, $\Delta H_{\mathrm{off}}^{0}$ и ионизационным потенциалом следует объяснить «локализацией» энергии внутри молекулы. Чем меньше радиус катиона, тем больше экранизация даже при постоянном анионе. С увеличением радиуса иона в ряду F—Cl—Br—I экранизация также возрастает. Интересно то обстоятельство, что отношение теплот образования галогенидов бериллия к теплотам образования тех же соединений бария представляет ряд 0,769; 0,543; 0,493; 0,350 соответственно у фторидов, хлоридов, бромидов и иодидов. Из этого следует, что максимальная экранизация и «локализация» энергии проявляется у BeI2. Можно предположить, что галогениды бериллия, и особенно BeI2, по своей структуре расплава ближе стоят к молекулярным соединениям, чем галогениды стронция, бария. Это подтверждается данными по электропроводности и другим физикохимическим свойствам [21-23]. Предполагая максимальную «локализацию» у галогенидов бериллия, мы должны ожидать минимальное значение энергии сублимации, что подтверждается представленными табл. 1 значениями энтальпий сублимации фторидов и хлоридов. Действительно, «локализация» энергии внутри молекулы или в кристалле в первой координационной сфере резко снижает взаимодействие дальнего порядка.

На преобразование структуры кристалла затрачивается меньше энергии, если у двух соединений степень и глубина процесса диссоциа-

ции при фазовых превращениях одинаковы.

Различия в теплотах плавления, испарения и сублимации при условии близости энергии связи указывают на различие концентрации комплексных ионов в расплаве и состава пара. Так, у хлорида бериллия максимальное содержание димера не превышает 5% [24]. Масс-спектрометрическое изучение галогенидов магния [25—26] показало, что в парах содержится 1% молекул типа M_2X_4 . Суммарные теплоты сублимации $BeCl_2$ и $MgCl_2$ соответственно 32 и 53 ккал, т. е. у хлорида магния преобразование структуры более существенно по сравнению с $BeCl_2$ в результате разрыва большего числа связей дальнего порядка и более высокой степени диссоциации полимерных молекул.

Энтальпии сублимации, испарения и состав пара. Устойчивое состояние в парах полимерных молекул ставит вопрос о необходимости учиты-

вать энтальпию процесса

$$(MX_n)_m = m(MX_n) \quad \Delta H_T^0 \tag{9}$$

при установлении энергии процесса (8) или энергии кристаллической решетки. Если учесть, что большинство элементов Системы образуют полимерные молекулы, в частности димерные, необходимость введения поправки еще более очевидна. Из этого следует, что в уравнение для расчета $U_{\rm кp}$ необходимо ввести слагаемое, которое учитывало бы полимеризацию с образованием различных форм молекул. Разумеется, это слагаемое зависит от парциального давления, и оно максимально при условии полной полимеризации. Например, хлориды алюминия и железа в парах полностью димеризованы. В этом случае $\Delta H_{\rm субл}^0$ является энергией сублимации грамм-молекулы $M_2 X_{2n}$. Для расчета энергии диссоциации кристалла на ионы с учетом грамм-моля мономерной молекулы

Схема I
$$[MX_n] = (M^{+n}) + n(X^-) \qquad \Delta H_1^0$$

$$[MX_n] = \frac{1}{2}(M_2X_{2n}) \qquad \frac{1}{2}\Delta H_2^0$$

$$\frac{1}{2}(M_2X_{2n}) = (MX) \qquad \frac{1}{2}\Delta H_3^0$$

$$(MX_n) = (M^{+n}) + n(X^-) \qquad \Delta H_4^0$$

уравнение имеет вид

$$\Delta H_4^0 = \Delta H_1^0 - \frac{1}{2}\Delta H_2^0 - \frac{1}{2}\Delta H_3^0. \tag{10}$$

Пар состоит из мономера и димера. Суммарная теплота парообразования

$$\Delta H = q_1 \Delta H_1^0 + q_2 \Delta H_2^0 \tag{11}$$

и теплота диссоциации димера

$$(M_2X_{2n}) = 2(MX_n),$$
 (12)

$$\Delta H_{\text{nuc}}^0 = q \Delta H_{\text{2nuc}}^0 \tag{13}$$

суммируются при расчете энергии парообразования одной грамм-молекулы.

Коэффициенты q_1 и q_2 — доли (процентное содержание в парах соответственно мономера и димера):

$$q_1 + q_2 = 1. (14)$$

Их можно установить по составу пара, ионному току и другим харак-

теристикам, пропорциональным давлению пара.

Так как энергия взаимодействия между ионами одной координационной сферы равноценна, энтальпии сублимации (или испарения) мономера и димера должны зависеть от числа разрывающихся связей и единичной энергии связи в кристалле. Поэтому, чем больше энергия последней и чем больше различие ионов противоположного знака (n) в ближней сфере в кристалле и молекуле, тем больше должны различаться энтальпии сублимации мономера и димера. Рассмотрим конкретный случай.

Координационное число NaCl в кристалле равно 6, следовательно, при переходе в пар молекулы NaCl разрываются связи дальнего порядка и 5 (из 6) ближнего. Энтальпия этого процесса $51,3\pm0,4$ ккал/моль. При сублимации Na₂Cl₂ в ближнем порядке разрывается 9 связей (из

11) и ΔH процесса 55,3 ± 1,0 ккал/моль.

Используя эти величины, можно оценить стабилизацию в кристалле на единичную энергию связи

$$\Delta H_{\rm cra6} = \frac{\Delta H_{\rm cy6л, дим} \cdot \Delta H_{\rm cy6л, мон}}{n}.$$
 (15)

В случае NaCl стабилизирующее действие каждого иона ближней сферы отвечает значению 1,0 ккал. Так как сублимация осуществляется с поверхности, число координирующихся ионов противоположного знака должно быть меньше, и поэтому вычисленная величина характеризует минимальное значение стабилизирующего действия. Учитывая это обстоятельство и структуру кристалла NaCl, можно установить более точное значение энергии стабилизирующего действия. При этом разность в числе разрывающихся связей ближнего порядка при сублимации мономера и димера равна 3; $\Delta H_{\rm cra6\,_{\pi}}$ на 1 ион отвечает 1,3 ккал.

В общей форме уравнения (11) и (13) имеют вид:

$$\Delta H = q_1 \Delta H_1^0 + q_2 \Delta H_2^0 + q_3 \Delta H_3^0 + \dots + q_n \Delta H_n^0 \, . \tag{16}$$

$$\Delta H_{\text{DHC}}^{0} = q_2 \Delta H_{2\text{DHC}}^{0} + q_3 \Delta H_{3\text{DHC}}^{0} + \dots + q_n \Delta H_{n\text{ DHC}}^{0}$$
 (17)

Мы проверили уравнение (11) и установили (табл. 2), что рассчитанные значения суммарных энтальпий сублимации и экспериментальные данные находятся в пределах погрешности опытов. Это подтверждает высказанное нами мнение и позволяет использовать имеющиеся в литературе сведения по парциальному давлению мономера и димера для расчета их термодинамических характеристик на основе данных по ΔH^0_T и ΔS^0_T суммарного процесса парообразования. При этом энтальпия одной формы находится, например, из корреляционных уравнений. Естественно, дополнительные сведения по тепловым эффектам испарения или сублимации одной из форм упрощают расчет.

Таблица 2

Суммарные теплоты пароо	бразования и тепло
-------------------------	--------------------

	Эк	сперименталі	ьные	F	ассчитанные	по уравнен	ию
Соединение	ΔΗ	· g		ΔΗ	1 · q		Литератур-
Соединение	мономера	димера	ΔΗ _{CYM}	мономер	димер	∆ <i>Н</i> сум	ники
NaCl _{cyбл}	51,3	55,3	53,0; 52,2	25,6	27,6	53,2	38
MgF _{2субл}	81,17	116	83	80,5	1,16	81,7	37
4С1 _{зисп} 4С1 _{зсубл}	$47,0\pm 3$ $57,2\pm 3$	74,0±3 86,3±3	45 54	45,6 55,6	2,07 2,43	47,7 57,8	39
Ni(CO) _{4исп} Fe(CO) _{5исп}	7,115 9,04	17,4 18,56	7,12 9,33	6,49 8,87	0,77 0,46	7,126 9,33	40

Таким образом, рассмотрение энергетических характеристик галогенидов элементов II группы вызывает сомнение в точности существующих величин энергий кристаллической решетки, так как в большинстве случаев не учитывалась энергия (процесс 9). Разумеется, чем меньше парциальное давление полимерных молекул, тем точнее получены значения $U_{\rm кp}$.

Не детализируя этот вопрос, отметим, что соответствие характера изменения теплот образования и энергии решетки друг другу зависит

от двух факторов: энергии связи М-Х и стерического фактора.

При достаточно большом радиусе иона металла на снижение теплоты образования преимущественно влияет энергия связи, и поэтому последовательность снижения с массовым числом величин $\Delta H_{\text{обр}}^0 U_{\text{кр}} I$ должна совпадать.

Это дает основание использовать в соотношении

$$h = \frac{\Delta H_{T \text{ kp}}^0 \cdot n}{\Delta H_{\text{MX}_n}^0} \tag{18}$$

теплоту образования для расчета приведенной теплоты фазового пре-

вращения.

Энтропии плавления как характеристики химической природы плавления. Учитывая, что энтропия системы есть мера порядка внутри ее, мы полагаем, что глубину и степень диссоциации при фазовых превращениях характеризуют энтропии этих процессов. Это противоречит существующему мнению, в том числе и мнению автора последнего обзора [27]. При этом отрицание существования комплексных ионов в расплавах, например галогенидов щелочных металлов, основывается на близости энтропии плавления одноатомных благородных газов (3,2—3,4 э. е.) [28] и галогенидов металлов I группы, у которых средние значения на один грамм-ион приравниваются к 3 э. е.

Отметим, что использование средних значений для всего ряда не вполне обосновано, поскольку в настоящее время существуют достаточно точные данные [17], и погрешности их определения значительно меньше средней арифметической ошибки. Наибольшие трудности при интерпретации экспериментальных данных с точки зрения отсутствия комплексообразования в расплавах появляются при рассмотрении

А. К. БАЕВ

энтропий плавления с числовым значением ниже 3 э. е. на 1 граммион. В первую очередь они возникают при анализе галогенидов лития,

рубидия, цезия, меди, серебра [29].

Девис, Родес, Убеллоде [30] придерживаются несколько другой точки зрения, хотя за основу также принимают сравнение со значением энтропий плавления инертных газов. Они считают, что присутствие комплексных ионов в расплаве служит причиной отклонения ΔS_{nn} , рассчитанного на ион, от 3 э. е. Исходя из предложенной нами точки зрения, у большинства соединений, за исключением соединений с чисто молекулярной кристаллической структурой, элементарную кристаллическую ячейку (в которой ион металла удерживает в своем ближнем окружении строго определенное число координирующих ионов) следует рассматривать в качестве комплексного иона. Именно этот ион является родоначальником всех комплексных ионов, более бедных по галоген-иону, образующихся при плавлении соединения в результате его лиссопиации. Следовательно, комплексные ионы должны присутствовать в расплавах галогенидов щелочных и щелочноземельных металлов. Если принять в качестве правильной точку зрения Девиса, Родеса, Убеллоде [30], то расплавы галогенидов щелочных металлов, за исключением фторидов, хлоридов и бромидов натрия и калия, бромидов и иодидов цезия, следует рассматривать состоящими из комплексных ионов, так как их энтропии плавления на один грамм-атом изменяются в интервале 2.11—3.33 э. е. [27].

Энтропии плавления галогенидов щелочноземельных металлов изменяются в пределах 0,9—3,5 э. е., что также позволяет предположить

наличие в их расплавах устойчивых комплексных ионов.

Имеющиеся в литературе значения энтропий плавления галогенидов первой и второй групп представлены в табл. 3. Чтобы сравнить характер изменения $\Delta S_{\text{пл}}^{\circ}$ с ростом массового числа атомов катионогенов и анионогенов, приведены теплоты плавления. Как следует из таблицы, в основном характер изменения энтропий плавления с ростом ионного радиуса катиона и аниона следует зависимости теплот плавления.

Таблица 3 Энтальпии и энтропии плавления галогенидов щелочных и щелочноземельных металлов ($\Delta H^0_{\Pi\pi}$, ккал/моль и $\Delta S^0_{\Pi\pi}$, э. e.) [11]

	~								
	1	ΛF _n	MC1 _n		MI	Br_n	MI_n		
Соединение	$\Delta H_{\Pi,\Pi}^0$	ΔS ⁰ пл	ΔН ⁰ пл	ΔS ⁰ πл	$\Delta H_{\Pi JI}^0$	ΔS _{Π,Π}	$\Delta H_{\Pi JI}^0$	ΔS _{Π.11}	
LiX NaX KX RbX CsX BeX ₂ MgX ₂ CaX ₂ SrX ₂ BaX ₂ ZnX ₂ CdX ₂ HgX ₂	6,47 8,03 6,75 5,82 5,19 1,6 13,9 7,1	5,77 6,14 6,75 5,76 5,23 4,2 9,05 4,2 — —	4,72 6,69 6,27 5,67 4,84 5,33 10,3; 13,45 6,78; 7,12 3,88; 3,90 3,90; 3,80 2,45 7,22 4,64	5,39 6,23 6,34 5,70 5,27 10,44 6,49 3,39 3,17 8,58 8,4	4,22 6,24 6,10 5,57 5,64 	5,13 6,24 6,10 5,77 6,20 	3,50 3,64 5,74 5,27 5,64 ————————————————————————————————————	4,72 5,64 5,74 5,73 6,27 	

Действительно, если учесть [10], что величина теплоты плавления соелинения служит количественным отражением процесса разрыва связей дальнего порядка и частично ближнего и, следовательно, характеризует понижение координационного числа при плавлении, то при большей степени диссоциации подвижность образующихся относительно меньших по размеру ионов должна быть больше, чем у солей, у которых при плавлении координационное число претерпевает незначительное изменение. Следовательно, большей свободой движения обладать ионы того соединения, которому свойственно максимальное понижение координационного числа при плавлении, в силу меньшего размера их комплексного иона. В действительности же в расплаве присутствует одновременно несколько комплексных ионов, например у галогенидов щелочных металлов, включая ион М₅Х †. Поэтому в данном случае большие значения энтропии плавления, тем более при большем размере простого иона атома металла или галогена (например, галогениды натрия и калия, фторид и хлорид с бромидом и иодидом цезия), соответствуют более глубокой диссоциации в процессе илавления. Это можно проследить на примере иодидов щелочных металлов, которым свойственно повышение теплот и энтропий плавления в ряду литий цезий, в то же время именно в этой последовательности возрастает ионный радиус атома катионогена. Поэтому в том же ряду следовало бы ожидать уменьшения подвижности более крупных, одинакового состава (допустим $M_n X_m^+$) комплексных ионов цезия по сравнению с ионами лития или калия. Как следствие однородности ионного состава их расплавов энтропии плавления должны были бы уменьшаться при замене катиона лития на калий, цезий. Те же особенности наблюдаются у галогенидов щелочноземельных металлов (табл. 3) с той разницей, что теплота и энтропия плавления уменьшаются с возрастанием массового числа катионогена. Уменьшение в этом ряду теплоты плавления в 3---4 раза указывает на снижение степени диссоциации сложных комплексных ионов в том же ряду. Кроме того, энтропии в отдельных случаях уменьшаются примерно в 3 раза (хлориды и бромиды щелочноземельных металлов) при общем возрастании ионного радиуса с 0,344 A° v бериллия до 1,43 A° у бария.

Помимо этого, для галогенидов щелочноземельных металлов характерно относительное возрастание энтропии плавления в ряду F—I, что также связано с понижающейся устойчивостью комплексных ионов с увеличением ионного радиуса анионогена от фтора к иоду. Некоторые отклонения от зависимостей ряда Be—Ba, F—I связаны с симбатным влиянием радиуса катиона и аниона на устойчивость комплексного иона, его концентрацию и, следовательно, на изменение свободы движения

в жидкости.

Если меньшей теплоте плавления соответствует повышенное значение энтропии (тем более при возрастающем ионном радиусе одного или обоих ионов), то это свидетельствует о том, что у данного соединения связи ближнего и дальнего порядков энергетически менее прочны (при одинаковом их числе), а значит концентрация однородных комплексных ионов меньше и координационное число в расплаве атома комплексообразователя также ниже. Все это и обеспечивает возрастание энтропийного фактора.

Итак, рассмотрение энтропий плавления подтверждает высказанное нами предположение относительно устойчивого существования в расплаве галогенидов металлов I и II групп комплексных ионов. Различие заключается в том, что устойчивость комплексных ионов у щелоч-

ных металлов уменьшается в ряду натрий — цезий, у щелочноземель-

ных металлов — в ряду барий — бериллий [5].

Рассмотренные зависимости и некоторые особенности на примере энтропий плавления галогенидов металлов I и II групп Системы указывают на протекание процесса диссоциации при плавлении, в результате чего разрушается кристаллическая структура, одновременно понижается координационное число иона комплексообразователя, в свою очередь зависящее от прочности связи М—Х. Как отмечено, понижение координационного числа при плавлении связано с глубиной (числом разрывающихся связей) и степенью диссоциации, что зависит от природы и в том числе от взаимной поляризуемости катиона и аниона.

Структура молекул и полимеризация галогенидов щелочноземельных металлов. Результаты исследований П. А. Акишина с сотр. структуры парообразных галогенидов металлов П группы электронографическим методом [31—34] на основе полученных значений углов X—М—Х позволили ему сделать вывод о линейном строении молекул CaX₂, SrX₂, BaX₂. Однако высокая погрешность опытов (для некоторых солей выше 20%) и наличие противоречивых данных других авторов [35] ставит это

под сомнение.

Опираясь на результаты исследования поведения молекулярных пучков галогенидов в неоднородном электрическом поле, Вертон, Берг и Клемперер [35] пришли к выводу, что молекулы BaF_2 , $BaCl_2$, $BaBr_2$, BeL_2 , SrF_2 , $SrCl_2$ и CaF_2 обладают постоянным дипольным моментом, отличным от нуля и, следовательно, имеют нелинейную структуру. У BaF_2 , $BaCl_2$ и SrF_2 угол X—M—X приблизительно одинаков. Соединения $BaBr_2$, BaI_2 , $SrCl_2$ и CaF_2 имеют несколько больший угол. К подобному же выводу пришли О. П. Чаркин и M. Е. Дяткина [36] при качественном рассмотрении геометрии молекул MX_2 на основании энергий валентных соединений атомов металлов. Ими рассмотрены конфигурации Sp, Sd, p^2 , d^2 и Pd, из которых энергетически наиболее выгодными являются конфигурации Sp и Sd.

Гибридизация *Sp* приводит к линейному строению молекулы с углом X—M—X в 180°. При *Sd*-гибридизации образуются молекулы нелиней-

ной структуры с углом в 90°.

Согласно критерию силы связи Полинга, для образования двух химических связей более выгодна Sd-гибридизация. Из сравнения энергий валентных состояний Sp и Sd-конфигураций вытекает, что элементы II группы следует разделить на группу Be, Mg, Zn, Cd, Hg и группу Ca, Sr, Ba, Ra.

Энергия валентного состояния Sd-конфигурации I группы примерно на 70-100 ккал выше валентного состояния Sp-конфигурации. Это указывает на то, что у элементов I подгруппы химические связи образования электронами единственной Sp-конфигурации, что и обусловливает линейное строение молекул их галогенидов. Близость энергий валентных связей Sp и Sd-конфигураций для Ca, Sr, Ba и Ra указывает на одновременное, приблизительно одинаковое участие в образовании химической связи, что приводит к нелинейности молекул.

Основываясь на значениях энергии валентных состояний Sp и Sd-конфигураций и учитывая, что относительная доля участия валентного состояния в химической связи тем больше, чем меньше энергия его возбуждения, следует ожидать возрастания доли Sd-конфигурации в образовании химической связи для выбранного галоген-иона в ряду Ca < Sr < Ra < Ba. В том же ряду увеличивается дипольный момент и уменьшается угол X - M - X. Для бария угол равен $120 - 125^\circ$. Вероят-

но, эта особенность и характеризует близость различных характеристик у солей кальция, стронция, бария и, очевидно, радия. Большая доля участия в образовании химической связи Sd-конфигурации (согласно критерию силы связи Полинга, она наиболее выгодна для образования двух химических связей) обеспечивает повышенную прочность, особенно связей ближнего порядка, у галогенидов кальция, стронция и бария. Увеличение прочности этих связей в ряду Ca—Sr—Ra—Ba следует объяснить ростом долевого участия Sd-гибридизации.

Согласно данным [35], постоянный дипольный момент в соединениях кальция и стронция отличен от нуля лишь у SrF_2 , $SrCl_2$ и CaF_2 . У молекул $SrBr_2$, SrI_2 , $CaCl_2$ и $CaBr_2$ использование Sd-конфигурации не вы-

годно, и молекулы имеют линейное строение.

Совершенно очевидно, что наличие диполя и его величина указывают на способность галогенида образовывать, помимо трехатомной, молекулы повышенной сложности, хотя его отсутствие в случае линейности молекулы не служит основанием считать, что данное соединение не образует молекулы повышенной сложности.

Действительно, у галогенидов магния в газовой фазе содержится около 1% молекул ${\rm Mg}_2{\rm X}_4$ и 0.01% тримерных; у ${\rm BeCl}_2$ около 5% диме-

ра, для хлорида кадмия характерно [37—40]

$$P_{\mathrm{Cd_2Cl_4}} < < P_{\mathrm{CdCl_5}}$$

У галогенидов кальция, стронция, бария и радия с линейной структурой мономера должна наблюдаться повышенная склонность к полимеризации, очевидно, возрастающая с ростом дипольного момента. Из этого следовало бы ожидать увеличения степени димеризации в ряду Be < Mg < Ca < Sr < Ra < Ba. Однако при этом следует учитывать также различие в энергии связи и стерический фактор.

С этой целью воспользуемся термодинамическими характеристиками

процесса димеризации в парах и сублимации (табл. 4).

Таблица 4
Энтальпии и энтропии димеризации и сублимации галогенидов щелочных металлов, ккал/моль и э. е. [26, 37—40]

		Димеризация	I	Еублим	ация	∆Н0 дис	
Соединение	T°K	$\Delta H_{\mathcal{A}}^0$	$\Delta \mathcal{S}_{\mathcal{A}}^{0}$	ΔH_{289}^{0}	ΔS ⁰ ₂₉₈	[∆] Н _{суб}	
BeCl ₂ MgF ₂ MgCl ₂ MgBr ₂ MgI ₂ CaCl ₂ SrCl ₂ BaCl ₂ ZnCl ₂	1429 919 789 734	23 54 39,2 35,4 30,4 46 50 48 40,1	29 29,2 27,4 24,8	31 87 53 (51) 46,5 76 72 68 31,5	55,6 61,49 67,53 71,1	0,743 0,621 0,620 (0,674) 0,653 0,606 0,695 0,716 1 ₃ 272	

Согласно данным, изменение теплот димеризации для солей металла с различным галоидным ионом подчиняется той же закономерности, что и в случае галогенидов щелочных металлов [10], а именно уменьшается с ростом ионного радиуса галогена. Как видно из табл. 4, эта последовательность идентична характеру изменения теплот сублимации

галогенидов, что согласуется с приведенными выше выводами относительно родства (общности) процессов сублимации и димеризации. Так как при сублимации (испарении) разрываются связи дальнего и ближнего порядка, т. е. разрываются связи между координирующимися ионами и ионом-комплексообразователем, то это указывает не только на идентичность (или близость) процессов комплексообразования, димеризации, сублимации, испарения, но и на их взаимную связь. Следовательно, их природа одна и та же.

Таким образом, процессы плавления, испарения и сублимации следует рассматривать как процессы диссоциации, приводящие к упрощению структуры вещества при изменении агрегатного состояния. Процессы полимеризации (в том числе и димеризации) изменяют структу-

ру вещества в том же агрегатном состоянии.

Отношения $\Delta H_{\text{дис}}^0/\Delta H_{\text{субл}}^0$, характеризующие конкуренцию диссоциации димера и сублимации, указывают на увеличение степени полимеризации у галогенидов магния в ряду Cl—I—Br и у хлоридов в

ряду Be—Ba—Sr—Mg—Ca.

Используя координационные числа в твердом состоянии [8] и состав пара, можно дать качественную последовательность в изменении комплексообразующей способности. Однако из хлоридов можно сравнить только $SrCl_2(KY=8)$ и $BaCl_2(KY=9)$. Так как их состав пара мало отличается, у $BeCl_2$ при сублимации структура кристалла преобразуется в большей мере.

Таблица 5
Приведенные теплоты (h) фазовых превращений галогенидов щелочноземельных металлов

Плав	ление	Сублим	Сублимация			
соединение	h·100	соединение	h·100			
BaF ₂ SrF ₂ SrCl ₂ CaBr ₂ Srl ₂ BaCl ₂ CaF ₂ CaCl ₂ MgBr MgCl ₂ MgP	1,12 1,45 1,62 1,63 1,95 2,20 2,28 2,56 2,92 3,48 4,00	BeCl ₂ BeBr ₂ Bel ₂ Mgl ₂ Mgl ₂ MgV ₂ MgF ₂ CaBr ₂ CaCl ₂ SrCl ₂ BaBr ₂ SrBr ₂ BaBr ₂ BaBr ₂ SrBr ₂ SaF ₂ SrF ₂ SrF ₂	9,0 9,27 9,25 17,2 17,9 25,1 25,8 27,8 (28,5) 29,4 29,4 31,0 32,0 32,6 35,2			

Изменение КС на основе приведенной теплоты фазового превращения представлено в табл. 5. В расчетах мы использовали энергию кристаллической решетки. Из таблицы следует, что у галогенидов бериллия структура кристалла при сублимации изменяется в меньшей мере, чем, например, у галогенидов магния. Это подтверждается парциальным давлением пара [25,37] и отношением $\Delta H_{\text{дим}}^{\circ}/\Delta H_{\text{дис}}^{\circ}$. Преобразование структуры у BaCl_2 при сублимации также более существенно, чем у SrCl_2 .

Изменение комплексообразующей способности у галогенидов металлов подгруппы бора. Большинство галогенидов подгруппы бора образуют кристаллическую структуру, близкую к молекулярной [41—42], при незначительном влиянии размера галоген-иона на тип решетки с максимальным проявлением его у фторидов и хлоридов алюминия, что объясняется в основном стерическим фактором. Действительно, если для AlF₃ пространственно возможно расположить 6 ионов фтора и такая структура термически устойчива в твердом и расплавленном состояниях, то для AlCl₃ подобная структура неустойчива даже в смеси с другими солями [42—45]. Поэтому AlCl₃, AlB₃ и AlI₃ в расплаве устойчив комплекс AlX₄. т. е. при координации четырех ионов.

Построение кристаллической структуры хлорида, бромида и иодида алюминия из молекул $\mathrm{Al_2X_6}$ [46—48] и факт существования галогенидов бора, алюминия, галлия, индия в парах преимущественно в виде димерных молекул в широком интервале температур [48—50] дает основание считать, что у галогенидов подгрушпы бора (при возможном исключении фторидов) переход в пар из твердого состояния осуществляется в ре-

зультате сублимации молекулярных групп M_2X_6 .

Согласно данным [48—51] , молекулы M_2X_2 сохраняются при плавлении, о чем свидетельствуют также функции радиального распределения [9, 52—54], но, очевидно, с теми дополнениями, которые свойственны расплавам даже при малой доле ионного типа связи: помимо простых ионов, в расплаве должны присутствовать сложные молекулы и различные полиядерные ионы, представляющие не что иное, как продукт ассоциации молекул разной сложности с комплексными ионами, образующимися в расплаве при разрыве (диссоциации) связей дальнего и ближнего порядка.

Схема 2
$$M_2X_6 \rightleftarrows MX_2^+ + MX_4^-,$$

$$M_2X_6 + MX_2^+ \rightleftarrows M_3X_8^+,$$

$$M_2X_6 + MX_4^- \rightleftarrows M_3X_{10}^-.$$

Разумеется, в расплаве возможно существование и более сложных ассоциатов. Независимо от знака заряда природа их образования одна и та же и определяется комплексообразующей способностью галогенидов подгруппы бора. Различие заключается в том, что при образовании полиядерного комплекса с положительным зарядом в качестве комплексообразователя выступает ион $MX_{\frac{1}{2}}^+$, при образовании $M_3X_{10}^-$ молекула M_2X_6 .

На основании данных по электропроводности, молекулярному объему и других физических свойств [42] повышенную склонность к образованию полиядерных комплексов следует ожидать у трихлорида алюминия. Возможно, эта отличительная особенность AlCl₃ затрудняет установление существования димерных молекул в расплаве при проведении исследований более совершенными фотоэлектрическими и фотографическими методами [47]. Помимо отмеченного, на результатах исследования трихлорида алюминия могло сказаться также различие в температурных областях исследований твердой и жидкой фаз. Но в отношении трибромида алюминия совпадение спектра твердой фазы со спектром расплава вновь подтвердило полученные ранее данные [46,48] о существовании димерных молекул в кристаллах и расплавах.

Обратимся теперь к термодинамическим характеристикам и на их

основе рассмотрим изменение КС у галогенидов подгруппы бора.

Существование в парах мономерных и димерных форм характеризуется конкуренцией различных процессов. Данные по кристаллическому и парообразному состояниям позволяют описать равновесие в системе следующими процессами.

Схема 3

$$\begin{split} [M_2 \mathbf{X}_6]_{\scriptscriptstyle \mathrm{TB}} &= 2 (\mathbf{M} \mathbf{X}_3)_{\scriptscriptstyle \mathrm{P33}} & 2 \Delta H_1 \\ \text{, } [M_2 \mathbf{X}_6]_{\scriptscriptstyle \mathrm{TB}} &= (\mathbf{M}_2 \mathbf{X}_6)_{\scriptscriptstyle \mathrm{P33}} & \Delta H_2 \\ (M_2 \mathbf{X}_6)_{\scriptscriptstyle \mathrm{P33}} &= 2 (\mathbf{M} \mathbf{X}_3)_{\scriptscriptstyle \mathrm{P33}} & 2 \Delta H_3 \\ \{M_2 \mathbf{X}_6\}_{\scriptscriptstyle \mathrm{K}} &= (M_2 \mathbf{X}_6)_{\scriptscriptstyle \mathrm{P33}} & \Delta H_4 \end{split}$$

При максимальной полимеризации, например у хлорида и бромида алюминия, имеют место следующие неравенства:

$$\Delta H_1 > \Delta H_2 < \Delta H_3$$
 и $\Delta H_3 > \Delta H_1$.

При понижающейся способности к координации у атома необходимым условием является снижение степени полимеризации. Следовательно, в этих расплавах должен измениться знак:

$$\Delta H_1 < \Delta H_2 > \Delta H_3$$
 и $\Delta H_3 < \Delta H_1$.

Это подтверждается данными [49—51], представленными в табл. 7, из которой следует, что при наличии более высокого значения энергии диссоциации димера (AlCl₃, AlBr₃, AlI₃, GaCl₃, GaBr₃) по сравнению с энергией сублимации или испарения содержание димера в парах составляет 100%. Напротив, теплота сублимации димера GaI₃ (22,48 ккал) примерно в два раза выше теплоты диссоциации (11 ккал), и его содержание составляет всего 8%. Таким образом, при условии

$$\Delta H_3 \gg \Delta H_1$$

содержание димера в парах должно быть минимальным.

Устойчивое существование в парах димерных или вообще полимерных молекул имеет место при выполнении для процессов

$$2[\mathbf{MX}_n]_{\text{TB}} = (\mathbf{MX}_n)_2 \quad \Delta H_5$$
$$[\mathbf{MX}_n]_{\text{TB}} = (\mathbf{MX}_n) \quad \Delta H_6$$

следующих соотношений:

 $\Delta \dot{H}_5 > \Delta H_6$ (в парах присутствуют в основном димерные молекулы); $\Delta H_5 = \Delta H_6$ (парциальные давления составляющих равны, если не учитывать фактор влияния давления на степень полимеризации);

 $\Delta H_{5} < \Delta H_{6}$ (в парах присутствуют в основном мономерные молекулы):

 $\Delta H_{5} \ll \Delta H_{6}$ (парциальное давление димерных молекул практически неощутимо).

При этом ΔH_6 указывает на разрыв связей дальнего и ближнего порядка, в то время как ΔH_5 характеризует разрывы всех связей, за исключением связи между двумя ближними молекулами.

Появление в парах димерных молекул может происходить по крайней мере по одной из следующих причин:

1) при выполнении одного из трех первых неравенств непосредствен-

но сублимируются димерные молекулы;

2) димерные молекулы образуются преимущественно в результате установления равновесия

$$2(MX_n) \rightleftharpoons (MX_n)_2$$
.

Очевидно, в чистом виде этот процесс должен осуществляться при значительном превышении числового значения ΔH_5 над ΔH_6 , хотя процесс

лиссоциации димера, разумеется, имеет место во всех случаях.

Отмеченные неравенства и приведенные в табл. 6 значения энтальпий позволяют качественно оценить КС в ряду галоген-иона или катиона металла, однако для этого требуется большое число экспериментальных данных.

В табл. 7 приведены теплоты фазовых превращений, рассчитанные

по уравнению и экспериментальным значениям $U_{\text{кр.р.}}$

Предлагаемая последовательность изменения комплексообразующей способности при фазовых превращениях находится в соответствии с данными по координационным числам твердых веществ и составу пара. Эти данные можно использовать, если учесть, что преобразование структуры будет повышенным при выполнении одного из условий:

1.) состав пара одинаков, координационные числа кристаллов раз-

личны;

2) координационные числа в кристаллах постоянны, состав пара

различен.

У галогенидов алюминия (табл. 6,7) выполняется первое условие (КЧ AlCl₃ и AlBr₃ равны 6 и 9); у галогенидов галлия состав пара различен при одинаковом значении КЧ.

Таблица 6
Энтальпии процессов фазовых превращений, ккал/моль

		Суммарны	ій процесс		$(M_2X_8)_{\Gamma a3} = 2(A1X_3)_{\Gamma a3}$		Содержание диме- ра. %		
Соедине-	субли	мация	испар	рение					
ние	A1X ₃	GaX ₃	AIX 3	GaX₃	A1X ₃	'GaX₃	A12X6	Ga₂X·6	
MF ₃ MCl ₃ MBr ₃ MI ₃	77 24,12 18,79 22,48	20,20 16,80 20,10	77 15,61 16,08 18,50	15,00 14,00 16,20	48 28 — 26,4	20 18,5 11	100 100 100	1 100 100 8	

Изменение комплексообразующей способности галогенидов d- и fэлементов III группы. На основе электронографических исследований
строения газообразных галогенидов скандия, иттрия, лантана и неодима
П. А. Акишин с сотр. [56, 57] пришли к выводу, что все они
имеют строение плоского треугольника. Однако результаты расчетов
энергий валентных состояний для элементов скандия, иттрия, лантана и
актиноидов [58] позволили О. П. Чаркину и И. Е. Дяткиной предположить у галогенидов этих металлов пирамидальное строение с атомом
«М» в вершине и углом Х—М—Х, равным примерно 95—105°. Такой
угол в молекулах между связями Х—М—Х свидетельствует о наличии

Таблица 7

Приведенные теплоты фазовых превращений галогенидов подгруппы бора

Соединение	h _{пл} ∙100	Соединение	h _{исп} ·100	Соединение	h _{субл} ⋅100
LaBr ₃ LaI ₃ GaCl ₃ AlBr ₃ InI ₃ AlI ₃ AlCl ₃	0,64 0,90 1,17 1,28 1,29 1,94 1,97	LaBr ₃ AlCl ₃ AlL ₃ Ial ₂₃ AlBr ₃ LaCl ₃	3,19 3,62 3,74 3,76 3,80 5,62	LaBr ₃ LaI ₃ AlBr ₃ AlCl ₃ AlI ₃ LaCl ₃	3,83 4,66 5,08 5,59 5,68 6,79

у них диполя, хотя и невысокого по своему значению. Тем не менее, можно предположить образование в парах сложных (димерных) молекул. Их парциальные давления должны быть значительно меньшими, чем у галогенидов подгруппы бора, и, вероятно, должны быть близкими соответствующим значениям димерных молекул бериллия, магния [24].

Действительно, Кинлей [59] установил димеризацию пара трихлорида иттрия при масс-спектрометрическом изучении. Интенсивности ионов YCl_2^+ и $Y_2Cl_5^+$ соответственно равны 100 и 3,0. Теплоты испарения и сублимации форм YCl_3 и YCl_6 соответственно равны $\Delta H_{\rm исп} = 47$, $\Delta H_{\rm ucn} L_2Cl_6 = 74$, $\Delta H_{\rm cv6n} = 57.2$ и $\Delta H_{\rm cv6n} LCl_6 = 86.3$ ккал/моль.

Масс-спектрометрическое исследование состава пара хлоридов Nd, Ег и Y при 650° также указывает на наличие в парах этих соедине-

ний димерных молекул [61] порядка 0,1—1%.

Состав пара и наличие диполя у молекул галогенидов скандиевой группы и РЗЭ предполагают существование в их расплавах комплексных ионов, образующихся в результате разрыва связей дальней и частично ближней координации. Так как независимо от температуры в расплаве присутствуют и свободные молекулы, в последнем должны осуществляться равновесия

$$LnX_3 \rightleftharpoons LnX_2^+ + X^-,$$

 $LnX_3 + X^- \rightleftharpoons LnX_4^-.$

На существование в расплаве галогенидов РЗЭ комплексных ионов типа LnX₄—указывают данные исследования системы Ce—CeCl₃ [60].

Приведенный материал с достаточной определенностью говорит о комплексообразовании в расплавленном и парообразном состояниях у элементов III группы. Наибольшей КС, устойчивостью комплексных ионов и димерных молекул характеризуются галогениды бора, алюминия, галлия, индия. В меньшей степени КС проявляется у галогенидов скандия, иттрия, лантана и РЗЭ, хотя в термодинамическом аспекте образование комплексных ионов и димерных молекул для галогенидов побочной подгруппы более экзотермично. Однако им свойственно подчинение условию

$$\Delta H_{ ext{cyбл.дим}} > \Delta H_{ ext{дис.дим}}.$$

Рассмотрим причины, обусловливающие различие КС у элементов подгруппы бора и скандия — лантана.

О. П. Чаркин и И. Е. Ляткина на основании расчета энергий валентных состояний у элементов III группы констатировали, что элементы подгруппы бора и скандия резко отличаются по типу и по величине энергий валентных конфигураций. У подгруппы бора единственной, ведущей к образованию химической связи, является конфигурация Sp^2 , и молекулы МХ, имеют структуру плоского треугольника. У подгруппы скандия наиболее выгодна Sd^2 -конфигурация и для этих галогенидов следует ожидать пирамилальное строение с атомом металла в вершине. Уместно обратить внимание на свойства элементов III группы, которые подтверждают различие в строении. Если, предположим, принять структуру плоскостного треугольника, то при условии близости ионных радиусов, ионизационных потенциалов, $\dot{U}_{\kappa_{\rm P}}$ у галогенидов галлия, индия, скандия, иттрия следовало бы ожидать близость энергий сублимации, состава пара, диссоциации димера. В действительности, у галогенидов скандиевой подгруппы первые величины значительно выше, а димера в парах содержится примерно на два порядка меньше. Мы склонны объяснить этот факт особенностями Sp^2 - и Sd^2 -конфигураций.

Пирамидальная структура предполагает образование диполя и более высокое координационное число, что приводит не только к увеличению числа координирующихся ионов, возрастанию порядка взаимодействия в кристалле, но и к снижению энергии единичной связи. Поэтому в отличие от галогенидов подгруппы бора галогениды скандиевой подгруппы должны более существенно изменять свою структуру при плавлении, испарении и сублимации, что подтверждается сравнением данных табл. 7 и 8.

Таблица 8
Приведенные теплоты фазовых превращений некоторых галогенидов подгруппы скандия

Соединение	<i>h</i> _{пл} ·100	Соединение	h _{исп} ⋅100	Соединение	<i>h</i> _{субл} ·100
YC1 ₃	2,51	ScCl ₃	11,90	4Cl ₃	15,07
LaI ₃	2,53	Yl ₃	12,16	Lal ₃	15,17
LaCl ₃	2,66	YCl ₃	12,56	LaCl ₃	15,66
YI ₃	3,56	LaI ₃	12,64	4I ₃	15,72
SeCl ₃	4,14	LaCl ₃	13,00	ScCl ₃	16,04

Следует отметить, что в настоящее время аналогичное рассмотрение для большинства галогенидов РЗЭ и актиноидов не представляется возможным из-за низкой точности экспериментальных данных. В связи с этим заслуживают внимания данные [62—63] по хлоридам. Отсутствие данных по $U_{\rm kp}$ и аналогия в изменении теплот образования, ионизационных потенциалов позволяет воспользоваться уравнением (18) для характеристики изменения КС у f-элементов.

Рассмотрение полученных величин (табл. 9) указывает на достаточно равномерное преобразование структуры кристалла и расплава при плавлении, сублимации и испарении в рядах скандий — лантан — актиний, РЗЭ и актиноидных элементов и взаимосвязи этой структуры с размером иона-комплексообразователя.

Отметим также, что хлориды РЗЭ следует подразделить на два ряда с симбатным характером изменения числовых значений преобразования структуры, происхождение которых взаимосвязано с холостыми и спаренными f-электронами.

Таблица 9

Приведенные теплоты плавления хлоридов d- и f-элементов третьей группы

Соединение	100-Апл	100-h _{исп}	100·h _{субл}	Соединение	100∙ h _{пл}	100-h _{исп}	h _{субл} ⋅100
ScCl ₃ YCl ₃ YCl ₃ LaCl ₃ CeCl ₃ PrCl ₃ NdCl ₃ PmCl ₃ SmCl ₃ EnCl ₃ IdCl ₃ TbCl ₃	21,8 13,0 13,5 12,9 12,8 13,0 12,2 11,1 10,6 10,0 9,5 9,0	62,4 60,0 76,6 75,9 74,8 74,9 74,5 74,0 74,1 73,7 74,3 74,6	84,2 73,0 90,1 88,8 87,6 87,9 86,7 85,1 84,7 83,7 83,8 83,6	HoCi ₃ ErCl ₃ TuCl ₃ Yt6Cl ₃ LuCl ₃ AcCl ₃ ThCl ₃ PaCl ₃ UCl ₃ NpCl ₃ PáCl ₃ AmCl ₃	9,1 9,9 11,3 12,1 15,6 10,5 11,7 11,1 12,7 13,9 19,9 16,7	74,7 74,7 75,0 75,6 75,4 55,2 60,1 52,8 66,3 55,6 61,2 59,7	83,8 84,6 86,3 87,7 91,0 65,7 71,8 63,9 79,0 69,5 71,1 76,4

Имеющиеся экспериментальные данные позволяют оценить максимальное значение КЧ галогенидов III группы в расплаве и парообразном состояниях.

В твердом состоянии большинство галогенидов металлов III группы имеют КЧ 10 [41]. Некоторые из них образуют структуру с КЧ 6, в том числе фториды алюминия, скандия, трихлорид алюминия.

Наличие в парах галогенидов металлов III группы димерных форм молекул указывает на равенство высшего КЧ, хотя из-за различия кон-

центрации димерных молекул среднее КЧ также различно.

Образование в расплаве полиядерных комплексов у соединений полгруппы бора дает основание предположить, что среднее КЧ в зависимости от температуры будет принимать значения от 6 до 4. Указание [60] на существование в расплаве трихлорида церия иона CeCl₄-и данные табл. 8 в свою очередь позволяют ожидать в индивидуальных расплавленных солях РЗЭ КЧ, близкое к 4. Так как приведенные теплоты фазовых превращений учитывают энергию связи, уравнение (18) можно использовать для установления степени превращения галогенидов элементов различных групп с равной валентностью. Исходя из данных $\Delta H_{\rm пл}$, $\Delta H_{\rm исп}$, $\Delta H_{\rm субл}$, мы рассчитали значения $h_{\rm пл}$, $h_{\rm исп}$, $h_{\rm субл}$. Рассмотрение результатов, представленных в табл. 10, показывает, что полученные значения степени превращения хорошо согласуются с фактическим материалом, согласно которому галогениды алюминия и галлия в расплаве и паре преимущественно димерны, и, следовательно, преобразование их структуры расплава при фазовых превращениях минимально. Максимальная степень превращения наблюдается у фторида циркония и хлорида скандия.

Комплексообразование у галогенидов четвертой — шестой групп Системы. Галогениды элементов IV группы в основном — соединения с молекулярной решеткой [41]. Наиболее типичны из них ССІ₄, SiCl₄, TiCl₄. Нулевое значение электропроводности у расплавленных галогенидов углерода, кремния, титана [42] служит указанием на молекулярную структуру в жидком состоянии. Это подтверждается исследованиями

методом рассеивания рентгеновских лучей [17].

На основании теории валентности многие авторы пришли к выводу относительно тетраэдрической структуры молекул у тетрагалогенидов IV группы. Это мнение подтвердилось исследованиями электронографи-

галогенидов трехвалентных металлов

Таблица 10
Привеленные теплоты фазовых превращений

						-0.22
Соединение	$100 \cdot h_{\Pi extsf{J}}$,Соединение	100∙ћисп	Соединение	к. ч. кристалла	100·h _{субл}
LaBr ₃ LaI ₃ LaCl ₃ AlBr ₃ AlCl ₃ AlCl ₃ ZrCl ₃ YCI ₃ LaI ₃ YBr ₃ LaCl ₃ TiF ₃ TiCl ₃ ZrF ₃ YI ₃ ScCI ₃	0,64 0,91 1,17 1,28 1,94 1,97 2,31 2,51 2,53 2,62 2,66 2,67 2,95 3,04 3,56 4,14	AIBr ₃ LaBr ₃ LaCl ₃ AICl ₃ AII ₄ LaI ₃ ZiCl ₃ TiF ₃ ScCl ₃ TiCl ₃ YI ₃ YCi ₃ LaI ₃ LaI ₃ LaCi ₃ ZnF ₈	2,58 3,19 3,47 3,62 3,74 3,76 11,17 11,50 11,90 12,05 12,16 12,56 12,64 13,00 13,52	AlBr ₃ LaCl ₃ LaI ₃ LaI ₄ LaI ₅ AlCl ₃ AlCl ₃ AlCl ₃ TiF ₃ TiCl ₃ YCl ₃ LaI ₂ LaCl ₃ YI ₃ ScCl ₃ ZrF ₃	9 6 - 8 9	3,86 4,64 4,67 4,83 5,59 5,68 13,48 14,17 15,07 15,07 15,17 15,66 15,72 16,04 17,56

ческим методом [64] соединений CX_4 , SiX_4 , GeX_4 , $PbCi_4$, $TiCl_4$, $TiBr_4$, $ZrCl_4$, $HfCl_4$. О. П. Чаркин и И. Е. Дяткина [66] пришли к тому же мнению на основании расчетных данных и анализа энергии валентного состояния возможных электронных конфигураций. Направленность связи [67], симметричность молекул и близость дипольного момента к нулевому значению [68] указывают на слабые межмолекулярные связи в твердом, расплавленном и парообразном состояниях, прочность которых существенно изменяется при нарушении агрегатного состояния. Именно эти причины обусловливают сохранение неравенства $\Delta H_{\rm neu}$ « $\ll \Delta H_{\text{лис}}$ димера. Тем не менее процесс ассоциации должен осуществляться. Это подтверждается термодинамическими расчетами, согласнокоторым у галогенидов IV группы возможно образование димерных молекул, хотя концентрации их должны быть крайне незначительны, и в отдельных случаях они не могут быть установлены существующими в настоящее время методами исследования. Молекулярный тип структуры твердых и расплавленных галогенидов предполагает незначительное изменение комплексообразующей способности, что подтверждается галогенидами титана (табл. 11).

Низкие значения $h_{\phi,np}$ у MoCl₅ также указывают на незначительное преобразование структуры кристалла и расплава при фазовых преврашениях, что соответствует молекулярному типу соединения.

Таблица 11 Приведенные теплоты фазовых превращений у галогенидов 4—6-й групп

Соединение	100-h _{ПЛ}	Соединение	100∙ <i>h</i> _{исп}	Соединение	100- <i>h</i> субл
TiBr ₄ TiI ₄ MoCl ₅	0,56 0,79 1,21	$TiCl_4$ $MoCl_5$ Til_4 TiF_4 Z_2F_4	1,54 2,11 3,30 4,97 10,55	MoCl₅ TiI₄	3,33 4,09

В этом отношении несколько необычно существование димера у пентахлорида вольфрама [71] с энтальпией испарения 13.2 ккал. $\Delta H_{\text{пис-лим}} = 10$ ккал и $\Delta H_{\text{исп}}$ МоС $l_5 = 13.9$ ккал. Сравнительно выгодно также отношение $\Delta H_{\text{дис,дим}}$ к $\Delta H_{\text{исп,мон}}$, равное 0,76. По-видимому, появление устойчивого димера у пентахлорида вольфрама и отсутствие его у MoCl₅ взаимосвязано с термической прочностью высших галогенидных

форм.

Электронографические исследования [68] газообразного пятифтористого фосфора показали, что молекулы PF5 имеют структуру правильной треугольной бипирамиды с атомом фосфора в центре симметрии и отстоящими от него пятью атомами фтора, расположенными в вершинах пирамиды. Аналогичную структуру имеет пятихлористый фосфор [69]. Ее же приписывают остальным высшим галогенидам фосфора. Наличие бипирамидальной структуры молекул служит основанием для рассмотрения галогенидов фосфора в качестве комплексных соединений с противоположным знаком комплексных ионов РХ+ и РХ- [41], т. е. димер фосфора правильнее следует рассматривать как комплексное соединение с разнорядным катионом фосфора. К подобному мнению мы пришли при рассмотрении низших галогенидных форм элементов подгруппы бора [70].

В предложенном кратком обзоре мы не затронули целый ряд вопросов. в том числе изменение комплексообразующей способности у галогенидов элементов вставных декад при изменении заряда атома, структуру расплавов, молекул. Однако рассмотренный материал позволяет ближе подойти к пониманию взаимодействия в двойных галогенилных системах и на основе данных по комплексообразующей способности предсказать тип диаграмм плавкости, возможность комплексообразования в двойной системе в твердом, расплавленном и парообразном состояниях и ближе подойти к выяснению структуры расплавов. На основании рассмотренного материала можно констатировать, что комплексообразование в бинарных системах предопределяется индивидуальными соединениями, их взаимодействием дальнего и ближнего порядка в кристалле, прочностью комплексного иона в расплаве и прочностью ди-

мерной формы молекулы в парах.

Литература

[1] Р. Б. Добротин. Сб.: Проблемы современной химии координационных соединений. 1. Л., 1966, 78. [2] М. Farber. J. Trans. Farad, Soc., 58, 479, 2090 (1962). [3] Г. И. Новиков, А. К. Баев. ЖНХ, 9, № 7, 1669 (1964). [4] Л. Н. Сидоров. Автореф. канд. дисс. М, 1963. [5] А. К. Баев. Общая и прикладная химия, 1, 207 (1969). [6] Д. И. Менделеев Основы химии. Изд. 3-е, 1877. [7] А. А. Гринберг. Введение в химию комплексных соединений. М.—Л., 1966. [8] Б. Ф. Ормонт. Химия и строение молекул. М., 1954. [9] А. А. Гринберг. Введение в химию комплексных соединений. М.—Л., 1966. [10] А. К. Баев. Общая и прикладная химия, 1, 191 (1969). [11] О. Кубашевский, Э. Эванс. Термохимия в металлургии. М., 1954. [12] А. S. Dworkin, М. А. Bredig. J. Phys. Chem., 67, 3, 697 (1963). [13] Э. В. Брицке, А. Ф. Капустинский и др. Термические константы неорганических веществ. М.—Л., 1949. [14] М. Х. Карапетьянц, М. Л. Карапетьянц. Таблицы некоторых термодинамических свойств некоторых веществ. М.—Л., 1967. [15] С. А. Шукарев, Г. И. Новиков, А. В. Суворов, А. К. Баев. ЖНХ, 3, 12, 2630 (1958). [16] Е. Е. Вгад, N. Jingrich. J. Chem. Phys. 11, 351 (1943). [17] L. Вгеwer. J. D. Somagajalu, Е. Вгаскеlt. Chem. Revs., 63, 2, 111 (1963). [18] С. А. Мамудов. Способы вычисления энергии решетки кристаллов. Сталинск, 1961. [19] В. И. Веденеев, Л. В. Гурвии и др. Энергия разрыва химических связей. Потенциалы ионизации и сродство к электрону. М., 1962. [20] К. Е. Уикс, Ф. Е. Блок. Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов. М., 1965. [21] Ю. К. Дялимарский, Б. Ф. Марков. Электрохимия расплавленных солей. М., 1964. [23] Ю. В. Баймаков, М. М. Ветиоков. Электрохимия расплавленных солей. М., 1964. [23] Ю. В. Баймаков, М. М. Ветиоков. Электрохимия расплавленных солей. М., 1964. [23] Ю. В. Баймаков, М. М. Ветиоков. Электрохимия расплавленных солей. М., 1964. [23] Ю. В. Баймаков, М. М. Ветиоков. Электрохимия расплавленных солей. М., 1964. [23] Ю. В. Баймаков, М. М. Ветиоков. Электрохимия расплавленных солей. М., 1964. [23

мей. М., 1966. [24] А. М. Greenbaum, E. R. Jates, M. Farber. J. Phys. Chem., 67, 9, 1802 (1963). [25] J. Berkowitz, J. R. Marguart. J. Chem. Phys., 37, 8, 1853 (1964). [26] R. Schoommaker, A. Friedman, R. Porter. J. Chem. Phus. 31, 1586 (1959). [27] E. A. Укии. Усп. хим., 34, 2, 322 (1965). [28] Eucken. Die Chemie, 55, 163 (1942). [29] D. Boskris. Hobbse проблемы современной электрохимин. М., 1962, 180. [30] Decis, Rogers, Ubblonde. Proc. Rog. Soc., 220 A., 14 (1953). [31] П. А. Акишин, В. П. Спиридонов. Кресталлографая, 2, 475 (1957). [32] П. А. Акишин. В. П. Спиридонов, Г. А. Соболее, В. А. Наумов. ЖФХ, 31, 461 (1957). [33] П. А. Акишин. В. П. Спиридонов, Г. А. Соболее, В. А. Наумов. ЖФХ, 31, 461 (1957). [34] П. А. Акишин. В. П. Спиридонов, Г. А. Соболее, В. А. Наумов. МФХ, 32, 58 (1958). [35] L. Warton, R. A. Berg, W. Klemperer. J. Chem. Phys., 39, 2023 (1963). [36] О. П. Чаркин, М. Е. Дяткина. ЖСХ, 5, 3, 451 (1964). [37] J. Berkowitz. J. R. Marguort. J. Chem. Phys., 37, 8, 1853 (1964). [38] R. R. Hammer, I. H. Pask. I. Amer. Ceram. Soc., 47, 6, 264 (1964). [39] Л. Н. Рабилков., Г. Ф. Тихинский. Физ. мет-и металловеденне, 10, 635 (1960). [40] М. А. Greenbaum. H. Chung Ko, M. Wong, M. Far-и металловеденне, 10, 635 (1960). [40] М. А. Greenbaum. H. Chung Ko, M. Wong, M. Far-и металловеденне, 10, 635 (1960). [40] М. А. Greenbaum. H. Chung Ko, M. Wong, M. Far-и металловеденне, 10, 642 (14) Б. Ф. Ормонт. Структура неорганических веществ. М. — J. 1950. [42] А. И. Беллев, Е. А. Жемиужина, Л. А. Фирсолова. Физических химия м. — J. 1950. [42] R. Hallow, M. J. S. (1935). [45] В. П. Машовец, М. С. Белецкий, Ю. Самконов, Р. В. Собобов. ДАН СССР, 113, 6, 1290 (1957). [46] Н. Jerdingu, E. Smit. Phys., Chem., 50, 171 (1941). [47] Е. В. Паришна, Ж. Ж. Раскин. Оптика и спектроскопия, 13, 4 (1962). [48] Р. А. Renes, M. Güllary, Rec. trav. Chem., 64, 938 (1959). [49] 1. D. Forester, A. Zalkin, D. H. Templeton. Inorgan. Chem., 31, 63 (1964), [50] П. А. Акишин, В. А. Наимов, Е. М. Татевеский. Кристаллография, 4, 194 (1969). [51] мия (в печати).