минск 1972

Л. Д. ПОЛЯЧЕНОК, Г. И. НОВИКОВ, О. Г. ПОЛЯЧЕНОК

получение и термическая устойчивость тіосі

Сведения о низшем оксихлориде титана TiOCl весьма немногочисленны. Кроме самых первых указаний на существование TiOCl, относящихся еще к концу прошлого века, известны лишь три работы [1—3], авторы которых исследовали свойства и условия синтеза этого соединения. Ниже приведены результаты тензиметрического исследования TiOCl с использованием статического метода с кварцевым мембранным нуль-манометром, которые позволили количественно охарактери-

зовать термическую устойчивость TiOCl.

Исследование вещества, синтезированного из TiCl₃ и TiO₂ по методу [2], показало, что данный продукт не является чистым, так как он разлагается легче трихлорида титана, что не согласуется с качественными наблюдениями о его высокой термической устойчивости. Нами была проведена работа по выяснению условий синтеза TiOCl, пригодного для тензиметрических исследований. Для синтеза использовалась реакционноспособная TiO₂, полученная путем гидролиза TiCl₄ в растворе NH₄OH с последующим прокаливанием при температуре 500—600°C. В качестве второго компонента при получении TiOCl использовались TiCl₂ и TiCl₃.

Опыты показали, что взаимодействие TiO_2 и $TiCl_2$, взятых в стехиометрических количествах, — наиболее удобный способ синтеза TiOCl,

поскольку реакция

$$[TiO2] + [TiCl2] \stackrel{>}{\sim} 2[TiOCl]$$
 (1)

идет без образования газообразных продуктов. При этом основная задача — полное удаление непрореагировавших TiO_2 и $TiCl_2$, а также образующегося при разложении последнего $TiCl_3$, поскольку даже малые количества этих примесей вызывают появление уже при сравнительно низких температурах большого давления $TiCl_4$:

$$2[TiCl_3] \stackrel{>}{\sim} [TiCl_2] + (TiCl_4), \tag{2}$$

$$2[TiCl3] + [TiO2] \rightleftharpoons 2[TiOCl] + (TiCl4),$$
 (3)

$$4[TiOCl] + [TiO2] \rightleftharpoons 2[Ti2O3] + (TiCl4).$$
 (4)

Присутствие примеси низших хлоридов титана внешне проявляется в малой устойчивости загрязненного продукта на воздухе. Для их полного удаления промежуточный продукт, синтезированный в течение нескольких десятков часов при температуре $650-700^{\circ}$ С, подвергался термической обработке при температуре $700-750^{\circ}$ С. При этом $TiCl_2$ и $TiCl_3$ полностью удаляются по реакциям (1-3), а образующийся

 $TiCl_4$ отгоняется в холодную часть ампулы. Свободный от этих примесей оксихлорид титана остается на воздухе без изменений в течение

практически неограниченного времени.

В табл. 1 приведены результаты рентгенофазового исследования* полученного оксихлорида титана. В этих образцах единственная примесь, способная давать реакции с образованием газообразных продуктов, — двуокись титана, и, следовательно, имеется возможность изучить равновесие реакции (4). Было выяснено, что равновесное давление устанавливается сравнительно медленно, за 2—3 часа, результаты при охлаждении и нагревании совпадают.

Таблице
Результаты ренттенофазового исследования TiOCl и продуктов его разложения

 	TiOCI	Остаток от разложения			
d, Å	I/I ₀ , %	d, Å	I/I ₀ , %		
8,21 3,44 2,68 2,59 2,01 1,84 1,61 1,48	100 7 28 9 97 8 50	8,08 3,75 2,71 2,59 2,26 2,25 2,12 1,87 1,70 1,51 1,49	16 89 100 90 9 46 7 29 100 19		

Предварительные опыты по возгонке TiOCl показали, что давление насыщенного пара TiOCl при температурах тензиметрических исследований мало, так как в течение 52 час. при 635°С в более холодной части ампулы удалось получить лишь около 20 мг возгона. Эту незначительную летучесть TiOCl Шэфер [2] связывает с возможностью химических транспортных реакций с участием следов воды или TiOCl₂. Таким образом, можно предположить, что общее давление, измеренное над TiOCl, является давлением разложения оксихлорида по схеме (4), а присутствием в нем паров TiOCl можно пренебречь. Опыты по отгонке и визуальные наблюдения вещества в нуль-манометре после проведения тензиметрических исследований свидетельствуют о том, что единственный газообразный продукт реакции разложения TiOCl в этих условиях — TiCl₄.

Расчет, проведенный методом наименьших квадратов, дает для реакции (4) уравнение

$$\lg P_{\text{MM pt.ct.}} = 10,368 - \frac{7367}{T} (480 - 700^{\circ}\text{C}).$$
 (5)

Полученные данные (табл. 2) позволяют рассчитать стандартные термодинамические характеристики TiOCl при условии, что известны соответствующие значения для всех остальных компонентов реакции (4).

^{*} Авторы выражают признательность Л. С. Сгругач за съемку дифрактограмм образиов.

При расчете стандартных термодинамических характеристик TiOCl были использованы следующие значения ΔH°_{298} и S°_{298} Ti $_{2}O_{3}$, TiO $_{2}$ (анатаз) и TiCl $_{4}$: соответственно —362,8 ккал/моль, 18,8 э. е.; —218,1 ккал/моль, 11,9 э. е.; —181,6 ккал/моль, 84,4 э. е. [4,5]. В результате получены следующие характеристики TiOC! : ΔH°_{298} [TiOCl] = = —181,2 ± 1 ккал/моль, S°_{298} [TiOCl]=17,9 ± 1 э. е. Они практически совпадают с предложенными Шэфером [2] на основании приближенных расчетов.

 Таблица 2

 Термодинамические характеристики изученных процессов

Реакции	$\Delta H_{T}^{^{0}}$, ккал	ΔS_T^0 , 9. e.	Средняя тем- пература, °К	∆с _{р,} кал/моль∙град	ΔH ⁰ ₂₉₈ , ккал	ΔS ₂₉₈ , э. е.
4 6 7 8	$33,7\pm0,2$ $44,9\pm0,3$ $47,7\pm0,8$ $65,7\pm1,0$	$34,3\pm0,2$ $39,8\pm0,2$ $38,1\pm0,6$ $46,9\pm1,0$	860 1020 1020 1020	4 6 6 8	$35,9\pm0,7$ $49,2\pm1,0$ $52,0\pm1,5$ $71,5\pm1,7$	$38,5\pm1,2$ $47,2\pm1,5$ $45,5\pm1,9$ $56,7\pm2,3$

Опыты показали, что практически полное удаление TiO_2 может быть достигнуто только в результате длительного прогрева вещества при температуре $750-800^{\circ}$ С с удалением образующегося $TiCl_4$ в холодную часть ампулы, находящуюся при комнатной температуре. В этих условиях одновременно происходит глубокое разложение TiOCl.

Для выяснения схемы разложения чистого оксихлорида титана были поставлены опыты по отгонке TiOCl в заведомо неравновесных условиях. В этом случае TiOCl в возгоне отсутствовал даже при температуре 900°С. После вымораживания $TiCl_4$ жидким азотом ампулу вскрывали и остаток исследовали рентгенографическим методом. Результаты, приведенные в табл. 1, свидетельствуют, что основной твердый продукт разложения $TiOCl - Ti_2O_3$. Часть ампулы, которая нагревалась до высокой температуры, оказалась покрытой силицидом титана. На основании рентгенографического исследования сделан вывод, что разложение чистого TiOCl в кварцевой аппаратуре происходит по схеме:

$$4[TiOCl] + \frac{1}{9}[SiO_2] \rightleftharpoons \frac{38}{27}[Ti_2O_3] + \frac{1}{27}[Ti_5Si_3] + (TiCl_4), \tag{6}$$

$$3[TiOCl] \rightleftharpoons [Ti_2O_3] + (TiCl_3),$$
 (7)

$$6[TiOCl] \rightleftharpoons 2[Ti_2O_3] + (Ti_2Cl_6). \tag{8}$$

Результаты обработки полученных данных для общего давления пара над TiOCl в присутствии SiO_2

$$\lg P_{\text{MM pt. ct.}} = 11,694 - \frac{9876}{T} (935 - 1100^{\circ} \text{K})$$
(9)

приведены в табл. 2 и позволяют рассчитать состав пара при любой температуре.

Полученные значения термодинамических характеристик TiOCl дают возможность рассмотреть процесс его диспропорционирования в твердой фазе:

$$[TiOCl] \rightleftharpoons \frac{1}{3} [Ti2O3] + \frac{1}{3} [TiCl3],$$

$$\Delta G^{\circ} = 3400 + 1.3T.$$
(10)

Таким образом, TiOCl оказывается термически устойчивым по отношению к разложению на твердые окисел и хлорид. Его разложение возможно при достаточно высокой температуре лишь вследствие образования газообразных продуктов.

Литература

[1] В. И. Бородин. Канд. дисс. Запорожье, 1967. [2] Н. Schäfer, F. Wartenpfuhl, E. Weise. Z. anorg. allgem. Chem., 295, 268, (1958). [3] Н. Schäfer, F. Wartenpfuhl, E. Weise. Angew. Chem., 69, 479 (1957). [4] Справочник химика, 2-е изд., т. 1. Л.—М., 1962. [5] М. Х. Карапетьянц, М. Л. Карапетьянц. Таблицы некоторых термодинамических свойств различных веществ. М., 1961.